自动生成元启发式算法:大语言模型在优化领域的新应用
近年来,随着大语言模型(LLM)技术的快速发展,这些模型在算法自动化设计中的潜力引起了广泛关注。特别是在元启发式算法设计领域,研究人员开始利用LLM生成新型优化算法,为复杂问题求解提供了更多可能性。 元启发式算法与其挑战 元启发式算法是一类通用的优化算法,通过模拟自然现象或抽象行为(如遗传、进化或动物行为)来解决复杂的优化问题。这类算法需要平衡全局探索和局部开发,设计时通常需要大量的领域知识和经验。然而,...
人工智能大语言模型起源篇(一),从哪里开始
序言:许多人最初接触人工智能都是在ChatGPT火热之际,并且大多停留在应用层面。对于希望了解其技术根源的人来说,往往难以找到方向。因此,我们编写了《人工智能大语言模型起源篇》,旨在帮助读者找到正确的学习路径,了解大型语言模型的大致起源。本文将分为三个部分,介绍当前主流的大型语言模型架构Transformer(变换器)模型的起源及其发展历程。Transformer并非横空出世,而是人工智能领域研究者们在长...
增强多模态大语言模型推理能力:混合偏好优化的魔力
摘要 在当今的科技领域,开放源码的多模态大语言模型(MLLMs)正如雨后春笋般涌现。它们的训练一般分为预训练和监督微调两步。然而,这些模型在多模态推理,尤其是链式思维(CoT)表现上常常因分布偏移而受限。为了解决这一问题,我们引入了一种偏好优化(PO)过程来提升MLLMs的多模态推理能力。具体来说,我们从数据和模型两方面着手:(1)在数据方面,我们设计了一个自动化偏好数据构建流程,从而创建了一个高质量的大...
大语言模型:谁来评判搜索结果的相关性?
至关重要的任务。简单来说,它决定了在你搜索某个问题时,回传的文档是否真正解答了你的问题。而过去,这项任务主要依赖于人类专家的判断,譬如美国国家标准与技术研究所(NIST)几十年来的评估流程。然而,随着大语言模型(LLMs,Large Language Models)的崛起,自动化相关性评估似乎不再是科幻小说中的情节,而是一个切实可行的研究方向。 在《A Large-Scale Study of Releva...
提示词优化、GPTs逆向工程、大语言模型原理、大语言模型优化、开源模型本地私有化部署、从零构建大语言模型、智能体构建以及大语言模型的发展趋势
深入理解和掌握大语言模型的前言技术,涵盖了提示词优化、GPTs逆向工程、大语言模型原理、大语言模型优化、开源模型本地私有化部署、从零构建大语言模型、智能体构建以及大语言模型的发展趋势。通过系统化的学习,不仅掌握理论知识,还能在实际操作中获得宝贵经验。 学习如何优化提示词,掌握GPTs逆向工程技术,了解并应用Transformer、BERT、GPT等模型的工作原理,精通检索增强生成、微调和量化技术,掌握开源大...
【AI大语言模型】提示词工程基础及进阶
【AI大语言模型】提示词工程基础及进阶 什么是提示词(Prompt) 提示词(Prompt)是与人工智能对话时用来引导或触发生成某种输出的指令。 它相当于你在与 AI 进行互动时所提出的问题或任务说明。提示词可以是简短的指令、一个问题,甚至是一段描述,目的是明确告诉 AI 你期望得到的结果。 提示词提示词,也就是给大语言模型提供提示,告诉大语言模型一个基础的上下文环境。就类似于告诉一个小学生现在是在上数学...
ChemChat——大语言模型与化学的未来,以及整合外部工具和聊天机器人的潜力
概述 论文地址:https://arxiv.org/abs/2309.16235 虽然近年来技术创新和变革日新月异,从根本上改变了我们对生物化学过程的认识,但化学领域仍花费大量时间和金钱–"10 年 "和 “3000 亿”–将新产品推向市场。这是由于实验室实验的高失败率、化学探索的广阔空间以及包括意外发现在内的强大运气成分。常见的情况是,设计一种分子,设计一条合成路线,并根据各种理论花费大量时间进行合成,...
如何在本地部署大语言模型
近年来,随着大语言模型(如GPT、BERT等)的迅速发展,越来越多的开发者和研究人员希望在本地环境中部署这些强大的模型,以便用于特定的应用场景或进行个性化的研究。本文将详细介绍如何在本地部署大语言模型,涵盖必要的环境配置、模型选择、代码实现及后续优化等方面,助你轻松上手。 1. 环境准备 1.1 硬件要求 在部署大语言模型之前,首先需要确保你的硬件环境能够满足模型的运行要求。以下是推荐的硬件配置: CPU:...
LLaMA: 开源大语言模型的革新者
今天给大家分享一篇论文《LLaMA: Open and Efficient Foundation Language Models》,这篇论文介绍了一系列开源且高效的基础语言模型LLaMA(Large Language Model Meta AI),并展示了它们如何在较小的参数规模下,仍能与当前最先进的大模型相媲美。论文中最引人注目的是,LLaMA-13B在规模比GPT-3小十倍的情况下,性能却超越了GPT-3...
AI大模型探索之路-训练篇11:大语言模型Transformer库-Model组件实践
系列篇章💥 AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概览 AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化 AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理 AI大模型探索之路-训练篇7:大语言模型Transf...