YOLOv9改进策略 :红外小目标 | 注意力 |多膨胀通道精炼(MDCR)模块,红外小目标暴力涨点| 2024年3月最新成果

 💡💡💡本文独家改进:多膨胀通道精炼(MDCR)模块,解决目标的大小微小以及红外图像中通常具有复杂的背景的问题点,2024年3月最新成果   💡💡💡红外小目标实现暴力涨点,只有几个像素的小目标识别率大幅度提升  💡💡💡多个私有数据集涨点明显,如缺陷检测NEU-DET、农业病害检测等;  改进1结构图如下:  改进2结构图如下:   《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多...

YoloV5改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

摘要 本文介绍我自研的下采样模块。本次改进的下采样模块是一种通用的改进方法,你可以用分类任务的主干网络中,也可以用在分割和超分的任务中。已经有粉丝用来改进ConvNext模型,取得了非常好的效果,配合一些其他的改进,发一篇CVPR、ECCV之类的顶会完全没有问题。 本次我将这个模块用来改进YoloV5,实现大幅度涨点。 自研下采样模块及其变种 第一种改进方法 将输入分成两个分支,一个分支用卷积,一个分支...

YoloV8改进策略:BackBone改进|GCNet(独家原创)

摘要 非局部网络(NLNet)通过为每个查询位置聚合特定于查询的全局上下文,为捕获长距离依赖关系提供了一个开创性的方法。然而,经过严格的实证分析,我们发现非局部网络所建模的全局上下文在图像中的不同查询位置几乎相同。在本文中,我们利用这一发现,创建了一个基于查询独立公式的简化网络,该网络保持了NLNet的准确性,但计算量大大减少。我们还观察到,这种简化的设计与压缩-激励网络(SENet)具有相似的结构。因...

YOLOv9改进策略 :IoU优化| Inner-IoU基于辅助边框的IoU损失,高效结合新型边界框相似度度量(MPDIoU)| 二次创新

   💡💡💡本文独家改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,新型边界框相似度度量(MPDIoU)MPDIoU损失进行有效结合 💡💡💡适用场景:小目标数据集,进一步提升检测精度,强烈推荐 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化...

YoloV8改进策略:BackBone改进|EfficientVMamba(独家原创)

摘要 本文使用EfficientVMamba的主干网络替代YoloV8的主干网络,实现涨点。Mamba是今年比较火的主干网络,使用Mamba改进的论文比较容易被顶会接收,如果有发论文的同学,非常推荐使用。 论文:《EfficientVMamba:轻量级视觉Mamba的空洞选择性扫描》 https://arxiv.org/pdf/2403.09977.pdf 先前的轻量级模型开发努力主要集中在基于CNN和...

YOLOv9改进策略 :注意力机制 | 注意力机制与卷积的完美融合 | 最新移动端高效网络架构 CloFormer

   💡💡💡本文改进内容: 引入CloFormer 中的 AttnConv,上下文感知权重使得模型能够更好地适应输入内容。相比于局部自注意力机制,引入共享权重使得模型能够更好地处理高频信息,从而提高性能。  💡💡💡注意力机制与卷积的完美融合 AttnConv |   亲测在多个数据集能够实现涨点  改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注...

YOLOv9改进策略 :卷积魔改 | 感受野注意力卷积运算(RFAConv)

💡💡💡本文改进内容:感受野注意力卷积运算(RFAConv),解决卷积块注意力模块(CBAM)和协调注意力模块(CA)只关注空间特征,不能完全解决卷积核参数共享的问题 💡💡💡使用方法:代替YOLOv9中的卷积,使得更加关注感受野注意力,提升性能 💡💡💡RFAConv|   亲测在多个数据集能够实现大幅涨点,有的数据集达到3个点以上  改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【...

YOLOv9改进策略:注意力机制 | 多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM等 | 即插即用系列,原创独家首发

  💡💡💡本文改进内容:多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM,创新性十足,可直接作为创新点使用。  改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 】【SPPELAN & RepNCSPELAN4优化】【小目标性能提升】【前沿论文...

YOLOv9改进策略 :主干优化 | ConvNeXtV2:适应自监督学习,让 CNN “再一次强大”?

    💡💡💡本文改进内容:完全卷积掩码自编码器框架 ConvNeXt V2,它显著提高了纯convnet在各种识别基准上的性能,包括ImageNet分类,COCO目标检测和ADE20k分割。还提供了各种尺寸的预训练ConvNeXt v2模型,从而在ImageNet上具有76.7%精度的3.7M Atto model和88.9%精度的650M huge model。           改进结构图如下: ...

YoloV8改进策略:Neck和Head改进|ECA-Net:用于深度卷积神经网络的高效通道注意力|多种改进方法|附结构图

摘要 本文使用ECA-Net注意力机制加入到YoloV8Neck和Head中。我尝试了多种改进方法,并附上改进结果,方便大家了解改进后的效果,为论文改进提供思路。 论文:《ECA-Net:用于深度卷积神经网络的高效通道注意力》 arxiv.org/pdf/1910.03151.pdf 最近,通道注意机制已被证明在改善深度卷积神经网络(CNN)的性能方面具有巨大潜力。然而,大多数现有方法致力于开发更复杂的...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.004068(s)
2024-04-14 16:39:00 1713083940