机器学习笔记(四)-决策树
决策过程的最终结果对应我们期望的判定结果,一颗决策树包含一个根结点、若干个内部结点、若干个叶结点。决策树的生成是一个递归的过程,一般三种情况会导致递归返回: (1)当前结点包含的样本属于同一类别,无需划分 (2)当前属性集为空,或者所有样本在所有属性上取值相同,无法划分(此时我们把当前结点标记为叶结点,将其类别设定为该结点所含样本最多的类别,是利用当前结点的后验分布) (3)当前结点包含的样本集合为空,不...
【机器学习】机器学习框架
机器学习框架是支持开发、训练、和部署机器学习模型的工具集和库,以下是一些主流的机器学习框架及其特点: 1. TensorFlow 特点: 由 Google 开发,支持从研究到生产的大规模部署,广泛应用于深度学习模型。优势: 强大的可扩展性,支持分布式计算。提供了丰富的高层 API(如 Keras)用于快速构建模型。适用场景: 图像分类、自然语言处理、生成对抗网络(GANs)等。语言支持: ...
【机器学习】深度学习、强化学习和深度强化学习?
深度学习、强化学习和深度强化学习是机器学习的三个重要子领域。它们有着各自独特的应用场景和研究目标,虽然都属于机器学习的范畴,但各自的实现方式和侧重点有所不同。 1. 深度学习(Deep Learning) 深度学习是一种基于神经网络的机器学习方法,通过多层网络结构(即深度网络)来自动从数据中提取特征,并逐层抽象出更高层次的特征。它与线性回归、决策树、支持向量机等传统机器学习...
深入探索机器学习中的目标分类算法
在当今数据驱动的世界中,机器学习(Machine Learning, ML)正逐渐成为解决问题的重要工具。在众多机器学习任务中,目标分类(Classification)算法尤其受到关注。本文将深入探讨目标分类算法的基本概念、常见类型、应用场景以及实际案例,帮助读者全面理解这一重要主题。 一、什么是目标分类? 目标分类是机器学习中的一种监督学习任务,其目标是根据输入数据的特征将数据点分配到预定义的类别中。与...
机器学习学习笔记-20240927
}) M(x) 的每个元素都是向量 x \mathbf{x} x 的函数时,求导结果是一个由雅可比矩阵组成的三维张量。 这些求导关系是理解多变量函数变化和优化算法的基础,广泛应用于解析力学、量子力学和机器学习等领域。 链式求导法则YYDS 求出损失函数偏导为0时的最优解w* 在机器学习中,求解最优参数 w ∗ w^* w∗ 通常是通过使损失函数对参数的偏导数为 0 来实现的,这意味着我们需要找到损失函数的...
机器学习(1)sklearn的介绍和六个主要模块、估计器、模型持久化
les网页,左侧的就是支持的模块,可以点进去查看使用方法。 https://scikit-learn.org/stable/auto_examples/index.html 3.监督学习和无监督学习 机器学习中的问题类型通常根据数据的特性、学习任务的目标以及用于训练模型的数据标签的可用性来分类。以下是您提到的四类问题的详细解释: 1. 监督学习 (Supervised Learning) 监督学习是一种机...
机器学习中的KNN算法:原理、应用与实践
在机器学习领域,算法众多,其中KNN(K-Nearest Neighbor)算法以其简单直观的特性而广受欢迎。本文将从KNN算法的基本概念、原理、实现步骤、模型超参数、优缺点以及实际应用案例等方面进行详细阐述。 KNN算法简介 KNN,即K最近邻算法,是一种基于实例的学习,或者说是懒惰学习。它的核心思想是根据一个样本的K个最近邻居的类别,通过投票的方式来预测该样本的类别。KNN算法简单易懂,易于实现,不...
什么是机器学习力场
机器学习力场(Machine Learning Force Fields, MLFF)方法是一类将机器学习技术应用于分子动力学(Molecular Dynamics, MD)模拟的技术。它通过使用机器学习算法拟合原子之间的相互作用能量和力场,使得在不牺牲精度的前提下,可以大幅度提高传统**基于第一性原理(ab initio)**方法的效率。与传统的力场(如Lennard-Jones力场、EAM力场等)不同...
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
一、介绍 使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。 本项目通过开发一个基于Python语言的文本情感分析系统,能够自动识别文本中的情感倾向,并区分积极情感和...
【机器学习】迁移学习概论
概论什么是迁移学习?为什么需要迁移学习?迁移学习的应用场景和优势迁移学习的基本原理和思路迁移学习的几种主要方法介绍 迁移学习概论 什么是迁移学习? 迁移学习(Transfer Learning)是一种机器学习技术,它旨在通过将在一个领域(源领域)学习到的知识迁移到另一个领域(目标领域),从而提高目标领域的学习效率。在传统的机器学习方法中,通常需要为每个新任务从头开始训练一个全新的模型,这不仅效率低下,而且...