YOLOv5改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)
一、本文介绍 本文给大家带来的改进机制是EfficientViT(高效的视觉变换网络),EfficientViT的核心是一种轻量级的多尺度线性注意力模块,能够在只使用硬件高效操作的情况下实现全局感受野和多尺度学习。本文带来是2023年的最新版本的EfficientViT网络结构,论文题目是'EfficientViT: Multi-Scale Linear Attention for High-Resolu...
YOLOv5改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)
一、本文介绍 本文给大家带来的改进机制是特征提取网络UniRepLknet,其也是发表于今年12月份的最新特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络结构就是在LKNet基础上的一个升级版本,LKNet我们之前已经出过教程了。UniRepLknet在各种视觉任务中,包...
YOLOv5改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)
一、本文改进 本文给大家带来的改进机制是CCFM配合Dyhead检测头实现融合涨点,这个结构配合在一起只能说是完美的融合,看过我之前的检测头篇的读者都知道Dyhead官方版本支持的输入通道数是需要保持一致的,但是CCFM作为RT-DETR的Neck结构其输出通道数就是一致的,所以将这两种模块结合起来可以说是完美融合,我也将其进行了实验,在我的数据上已经做到了完美涨点! ,我之前发的Damo-YOLO和CC...
YOLOv8改进 | Conv篇 | 利用YOLO-MS的MSBlock轻量化网络结构(既轻量又长点)
一、本文介绍 本文给大家带来的改进机制是利用YOLO-MS提出的一种针对于实时目标检测的MSBlock模块(其其实不能算是Conv但是其应该是一整个模块),我们将其用于C2f中组合出一种新的结构,来替换我们网络中的模块可以达到一种轻量化的作用,我将其用于我的数据集上实验,包括多个类别的数据集,其在轻量网络结构的同时,却能够提高一定的mAP精度,所以这是一种十分高效的模块,该网络结构非常适合那些模型精度已经无...
YOLOv8-Seg改进:轻量化改进 | 华为Ghostnetv2,端侧小模型性能新SOTA | NeurIPS22 Spotlight
🚀🚀🚀本文改进:GhostNetV2 是 GhostNet 的增强版本,GhostBottleneckV2与YOLOV8建立轻量C2f_GhostBottleneckV2 🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1)手把手教你如何训练YOLOv8-seg; 2)模型创新,提升分割性能; 3)独家自研模...
YOLOv5涨点改进:多层次特征融合(SDI),小目标涨点明显,| UNet v2,比UNet显存占用更少、参数更少
💡💡💡本文全网独家改进:多层次特征融合(SDI),能够显著提升不同尺度和小目标的识别率 💡💡💡在YOLOv5中如何使用 1)iAFF加入Neck替代Concat; 💡💡💡Yolov5/Yolov7魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 💡💡💡重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络...
YOLOv5改进 | 注意力篇 | CGAttention实现级联群体注意力机制 (全网首发改进)
一、本文介绍 本文给大家带来的改进机制是实现级联群体注意力机制CascadedGroupAttention,其主要思想为增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增加网络深度来提升模型容量,亲测在我的25个类别的数据上,大部分的类别均有一定的涨点效果,仅有部分的类别保持不变,同时给该注意力机制含...
YOLOv5改进 | 检测头篇 | ASFFHead自适应空间特征融合检测头(全网首发)
一、本文介绍 本文给大家带来的改进机制是利用ASFF改进YOLOv5的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,此版本为三头版本,后期我会在该检测头的基础上进行二次创新形成四头版本的Detect_ASFF助力小目标检测,本文的检测头非常推荐大家...
YOLOv8改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)
一、本文改进 本文给大家带来的改进机制是CCFM配合Dyhead检测头实现融合涨点,这个结构配合在一起只能说是完美的融合,看过我之前的检测头篇的读者都知道Dyhead官方版本支持的输入通道数是需要保持一致的,但是CCFM作为RT-DETR的Neck结构其输出通道数就是一致的,所以将这两种模块结合起来可以说是完美融合,我也将其进行了实验,在我的数据上已经做到了完美涨点! ,我之前发的Damo-YOLO和CCF...
YOLOv8改进 | 损失篇 | VarifocalLoss密集目标检测专用损失函数 (VFLoss,原论文一比一复现)
大家带来的是损失函数改进VFLoss损失函数,VFL是一种为密集目标检测器训练预测IoU-aware Classification Scores(IACS)的损失函数,我经过官方的版本将其集成在我们的YOLOv8的损失函数使用上,其中有很多使用的小细节(否则按照官方的版本使用根本拟合不了,这也是为啥网上的版本拟合不了的原因,其中需要设置一些参数),后面我也会给大家讲解到底模型改到什么地步的时候引入损失函数改...