一、概述GPIO是嵌入式系统最简单、最常用的资源了,比如点亮LED,控制蜂鸣器,输出高低电平,检测按键,等等。GPIO分输入和输出,在davinci linux中,有关GPIO的最底层的寄存器驱动,\arch\arm\mach-davinci目录下的gpio.c,这个是寄存器级的驱动,搞过单片机MCU的朋友应该比较熟悉寄存器级的驱动。GPIO的驱动主要就是读取GPIO口的状态,或者设置GPIO口的状态。就是这么简单,但是为了能够写好的这个驱动,在LINUX上作了一些软件上的分层。为了让其它驱动可以方便的操作到GPIO,在LINUX里实现了对GPIO操作的统一接口,这个接口实则上就是GPIO驱动的框架,具体的实现文件为gpiolib.c在配置内核的时候,我们必须使用CONFIG_GENERIC_GPIO这个宏来支持GPIO驱动。GPIO是与硬件体系密切相关的,linux提供一个模型来让驱动统一处理GPIO,即各个板卡都有实现自己的gpio_chip控制模块:request, free, input,output, get,set,irq...然后把控制模块注册到内核中,这时会改变全局gpio数组:gpio_desc[]. 当用户请求gpio时,就会到这个数组中找到,并调用这个GPIO对应的gpio_chip的处理函数。gpio实现为一组可用的 gpio_chip, 由驱动传入对应 gpio的全局序号去 request, dataout ,datain, free. 这时会调用gpio_chip中具体的实现。gpio是一组可控件的脚,由多个寄存器同时控制。通过设置对应的寄存器可以达到设置GPIO口对应状态与功能。数据状态,输入输出方向,清零,中断(那个边沿触发), 一般是一组(bank)一组的。寄存器读写函数: __raw_writel() __raw_writeb() __raw_readl() __raw_readb()二、linux 中GPIO模型的结构//表示一个gpio口,含对应的gpio_chip.//对于每一个gpio,都有一个gpio描述符,这个描述符包含了这个gpio所属的控制器即chip和一些标志,label等struct gpio_desc {    struct gpio_chip    *chip;    unsigned long    flags;    /* flag symbols are bit numbers */    #define FLAG_REQUESTED 0    #define FLAG_IS_OUT 1    #define FLAG_RESERVED 2    #define FLAG_EXPORT 3 /* protected by sysfs_lock */    #define FLAG_SYSFS 4 /* exported via /sys/class/gpio/control */    #define FLAG_TRIG_FALL 5 /* trigger on falling edge */    #define FLAG_TRIG_RISE 6 /* trigger on rising edge */    #define FLAG_ACTIVE_LOW 7 /* sysfs value has active low */    #define FLAG_OPEN_DRAIN 8 /* Gpio is open drain type */    #define FLAG_OPEN_SOURCE 9 /* Gpio is open source type */        #define ID_SHIFT 16 /* add new flags before this one */    #define GPIO_FLAGS_MASK ((1 ) - 1)    #define GPIO_TRIGGER_MASK (BIT(FLAG_TRIG_FALL) | BIT(FLAG_TRIG_RISE)) #ifdef CONFIG_DEBUG_FS    const char    *label;#endif};//采用了一个具有ARCH_NR_GPIOS大小的gpio描述符数组。这个描述符数组便代表了系统所有的gpio。static struct gpio_desc gpio_desc[ARCH_NR_GPIOS];//ARCH_NR_GPIOS=144,即系统现在有144个GPIO口//static struct davinci_gpio_controller chips[DIV_ROUND_UP(DAVINCI_N_GPIO, 32)];//将144个GPIO分成每32个一组//一组GPIO控制器结构,例如GPIO0和GPIO1是一组(共32个GPIO口),共用一组寄存器,所以GPIO0和GPIO1荷载一起用chips[0]来控制///共有144个GPIO,分为4组(GPIO0~GPIO8),每组有2个banks(即GPIO0和GPIO1为1组),每组最多可以有32个GPIO,每组的控制寄存器空间有10个。struct davinci_gpio_controller {    struct gpio_chip    chip;//每组对应的gpio_chip    int            irq_base;//每组对应的中断    spinlock_t        lock;//自旋锁    void __iomem        *regs;//每组的寄存器地址    void __iomem        *set_data;//设置数据寄存器地址    void __iomem        *clr_data;//清除数据寄存器地址    void __iomem        *in_data;//输入数据寄存器地址};//每一个davinci_gpio_controller结构都对应于一个gpio_chip结构,gpio_chip既可看成是davinci_gpio_controller结构的补充//表示一个gpio controller.通过这个结构抽象化所有的GPIO源,而让板上其它的模块可以用相同的接口调用使用这些GPIO。struct gpio_chip {    const char    *label;    struct device    *dev;    struct module    *owner;    int    (*request)(struct gpio_chip *chip,unsigned offset);//请求gpio    void    *free)(struct gpio_chip *chip,unsigned offset);//释放gpio    int    (*get_direction)(struct gpio_chip *chip,unsigned offset);    int    (*direction_input)(struct gpio_chip *chip,unsigned offset);//配置gpio为输入,返回当前gpio状态    int    (*get)(struct gpio_chip *chip,unsigned offset);//获取gpio的状态    int    (*direction_output)(struct gpio_chip *chip,unsigned offset, int value);//配置gpio为输出,并设置为value    int    (*set_debounce)(struct gpio_chip *chip,unsigned offset, unsigned debounce);//设置消抖动时间,尤其是gpio按键时有用    void    (*set)(struct gpio_chip *chip,unsigned offset, int value);//设置gpio为value值    int    (*to_irq)(struct gpio_chip *chip,unsigned offset);//把gpio号转换为中断号    void    (*dbg_show)(struct seq_file *s,struct gpio_chip *chip);    int    base;// 这个gpio控制器的gpio开始编号    u16    ngpio;//这个gpio控制器说控制的gpio数    const char    *const *names;    unsigned    can_sleep:1;    unsigned    exported:1; #if defined(CONFIG_OF_GPIO)    struct device_node *of_node;    int of_gpio_n_cells;    int (*of_xlate)(struct gpio_chip *gc,const struct of_phandle_args *gpiospec, u32 *flags);#endif#ifdef CONFIG_PINCTRL    struct list_head pin_ranges;#endif};//GPIO寄存器结构struct davinci_gpio_regs {    u32 dir; // gpio方向设置寄存器    u32 out_data; // gpio设置为输出时,表示输出状态(0或1)    u32 set_data; // gpio设置为输出时,用于输出高电平    u32 clr_data; // gpio设置为输出时,用于输出低电平    u32 in_data; // gpio设置为输入时,用于读取输入值    u32 set_rising; // gpio中断上升沿触发设置    u32 clr_rising; // gpio中断上升沿触发清除    u32 set_falling; // gpio中断下降沿触发设置    u32 clr_falling; // gpio中断下降沿触发清除    u32 intstat; // gpio中断状态位,由硬件设置,可读取,写1时清除。};struct gpio {    unsigned gpio;//gpio号    unsigned long flags;//gpio标志    const char *label;//gpio名};三、GPIO的初始化1.首先设置GPIO的管脚复用寄存器static __init void da850_evm_init(void){    //.......    ret = davinci_cfg_reg_list(da850_gpio_test_pins);    if (ret)        pr_warning("da850_evm_init: gpio test ping mux setup failed: %d\n", ret);    //.......}2.根据板级结构的资源初始化chips数组,此函数在系统初始化时自动调用static struct davinci_gpio_controller chips[DIV_ROUND_UP(DAVINCI_N_GPIO, 32)];//将144个GPIO分成每32个一组static int __init davinci_gpio_setup(void){    int i, base;    unsigned ngpio;    struct davinci_soc_info *soc_info = &davinci_soc_info;//板级资源结构    struct davinci_gpio_regs *regs;    if (soc_info->gpio_type != GPIO_TYPE_DAVINCI)//判断GPIO类型        return 0;    ngpio = soc_info->gpio_num;//GPIO数量144    if (ngpio == 0) {        pr_err("GPIO setup: how many GPIOs?\n");        return -EINVAL;    }    if (WARN_ON(DAVINCI_N_GPIO ))//DAVINCI_N_GPIO=144        ngpio = DAVINCI_N_GPIO;    gpio_base = ioremap(soc_info->gpio_base, SZ_4K);//将GPIO的寄存器物理基地址(#define DA8XX_GPIO_BASE        0x01e26000)映射到内存中    if (WARN_ON(!gpio_base))        return -ENOMEM;        //共有144个GPIO,分为4组(GPIO0~GPIO8),每组有2个banks(即GPIO0和GPIO1为1组),每组最多可以有32个GPIO,每组的控制寄存器空间有10个。    //chips[0]--chips[4],base值为0,32,64,96,128,ngpio分别为:32,32,32,32,16    for (i = 0, base = 0; base ; i++, base += 32) {        chips[i].chip.label = "DaVinci";        //设置操作函数        chips[i].chip.direction_input = davinci_direction_in;        chips[i].chip.get = davinci_gpio_get;        chips[i].chip.direction_output = davinci_direction_out;        chips[i].chip.set = davinci_gpio_set;        chips[i].chip.base = base;//每一组开始的GPIO号        //每组控制的GPIO个数,一般为32个        chips[i].chip.ngpio = ngpio - base;        if (chips[i].chip.ngpio > 32)            chips[i].chip.ngpio = 32;        spin_lock_init(&chips[i].lock);        //找到这组GPIO的寄存器地址,初始化chips结构        regs = gpio2regs(base);        chips[i].regs = regs;//设置每组的寄存器        chips[i].set_data = ?s->set_data;        chips[i].clr_data = ?s->clr_data;        chips[i].in_data = ?s->in_data;                gpiochip_add(&chips[i].chip);//注册gpio_chip    }    //chips数组添加到板级资源中    soc_info->gpio_ctlrs = chips;    soc_info->gpio_ctlrs_num = DIV_ROUND_UP(ngpio, 32);    davinci_gpio_irq_setup();//设置GPIO中断    return 0;}pure_initcall(davinci_gpio_setup);//linux初始化时会自动调用static struct davinci_gpio_regs __iomem __init *gpio2regs(unsigned gpio){    void __iomem *ptr;        //根据GPIO的基地址累加,其中基地址(gpio_base+0)是REVID(Revision ID Register)寄存器    //(gpio_base+8)是BINTEN (GPIO Interrupt Per-Bank Enable Register)寄存器    //所以第一组寄存器从基地址+0x10开始    if (gpio )        ptr = gpio_base + 0x10;    else if (gpio )        ptr = gpio_base + 0x38;    else if (gpio )        ptr = gpio_base + 0x60;    else if (gpio )        ptr = gpio_base + 0x88;    else if (gpio )        ptr = gpio_base + 0xb0;    else        ptr = NULL;    return ptr;}int gpiochip_add(struct gpio_chip *chip){    unsigned long    flags;    int        status = 0;    unsigned    id;    int        base = chip->base;        //检测gpio的有效性,判断这组GPIO的起始号是否在有效范围内    if ((!gpio_is_valid(base) || !gpio_is_valid(base + chip->ngpio - 1))&& base >= 0) {        status = -EINVAL;        goto fail;    }    spin_lock_irqsave(&gpio_lock, flags);        //如果这组GPIO的起始号小于0,则动态的分配gpio的开始索引。    if (base ) {        base = gpiochip_find_base(chip->ngpio);//这个函数在gpiolib.c中,在gpio_desc[]中分配chip->ngpio个空间(从最后往前分配),返回第一个index        if (base ) {            status = base;            goto unlock;        }        chip->base = base;    }    //确保这些分配的gpio号没有被其他chip占用    for (id = base; id ngpio; id++) {        if (gpio_desc[id].chip != NULL) {            status = -EBUSY;            break;        }    }    //填充gpio_desc,将该组内的每个GPIO口的gpio_desc结构和该组的控制结构chip联系起来    if (status == 0) {        for (id = base; id ngpio; id++) {            gpio_desc[id].chip = chip;            gpio_desc[id].flags = !chip->direction_input? (1 ): 0;//设置GPIO口标志        }    }    of_gpiochip_add(chip);unlock:    spin_unlock_irqrestore(&gpio_lock, flags);    if (status)        goto fail;    status = gpiochip_export(chip);//与sysfs文件系统有关,这里不关心    if (status)        goto fail;    return 0;fail:    /* failures here can mean systems won't boot... */    pr_err("gpiochip_add: gpios %d..%d (%s) failed to register\n",chip->base, chip->base + chip->ngpio - 1,chip->label ? : "generic");    return status;}四.gpio的申请//所谓申请就是检测GPIO描述符desc->flags的FLAG_REQUESTED标志,已申请的话该标志是1,否则是0//往往多个gpio作为一个数组来进行申请int gpio_request_array(struct gpio *array, size_t num){    int i, err;    for (i = 0; i ; i++, array++) {//遍历数组中的每一个GPIO,gpio是GPIO号,flags是输入输出标志等,label是其取一个名字        err = gpio_request_one(array->gpio, array->flags, array->label);        if (err)            goto err_free;    }    return 0;err_free:    while (i--)        gpio_free((--array)->gpio);    return err;}int gpio_request_one(unsigned gpio, unsigned long flags, const char *label){    int err;        //gpio则为你要申请的哪一个管脚,label则是为其取一个名字。    err = gpio_request(gpio, label);    if (err)        return err;    if (flags & GPIOF_DIR_IN)//GPIO标志是输入        err = gpio_direction_input(gpio);//设置管脚为输入    else//GPIO标志是输出        err = gpio_direction_output(gpio,(flags & GPIOF_INIT_HIGH) ? 1 : 0);//根据标志确定输出1还是0    if (err)        gpio_free(gpio);    return err;}int gpio_request(unsigned gpio, const char *label){    struct gpio_desc    *desc;    struct gpio_chip    *chip;    int            status = -EINVAL;    unsigned long        flags;    //屏蔽中断    spin_lock_irqsave(&gpio_lock, flags);    if (!gpio_is_valid(gpio))//判断是否有效,也就是参数的取值范围判断        goto done;            //根据GPIO号找到对应的GPIO描述符结构    desc = &gpio_desc[gpio];    chip = desc->chip;//找到该GPIO所在的组控制器    if (chip == NULL)        goto done;            //计数加1    if (!try_module_get(chip->owner))        goto done;    //这里测试并设置flags的第FLAG_REQUESTED位,如果没有被申请就返回该位的原值0    if (test_and_set_bit(FLAG_REQUESTED, &desc->flags) == 0) {        desc_set_label(desc, label ? : "?");//设置GPIO描述符结构desc的label字段        status = 0;    } else {        status = -EBUSY;        module_put(chip->owner);        goto done;    }    if (chip->request) {/* chip->request may sleep */        spin_unlock_irqrestore(&gpio_lock, flags);        status = chip->request(chip, gpio - chip->base);        spin_lock_irqsave(&gpio_lock, flags);        if (status ) {            desc_set_label(desc, NULL);            module_put(chip->owner);            clear_bit(FLAG_REQUESTED, &desc->flags);        }    }done:    if (status)        pr_debug("gpio_request: gpio-%d (%s) status %d\n",gpio, label ? : "?", status);    spin_unlock_irqrestore(&gpio_lock, flags);    return status;}五.GPIO的操作1.设置GPIO为输出或输入int gpio_direction_input(unsigned gpio){    unsigned long        flags;    struct gpio_chip    *chip;    struct gpio_desc    *desc = &gpio_desc[gpio];    int            status = -EINVAL;    spin_lock_irqsave(&gpio_lock, flags);        //判断GPIO号是否有效    if (!gpio_is_valid(gpio))        goto fail;    //找到GPIO对应的gpio_chip结构    chip = desc->chip;    if (!chip || !chip->get || !chip->direction_input)        goto fail;        //确保此GPIO是在此组内,chip->base是此组GPIO的起始号,chip->ngpio是此组GPIO的个数    gpio -= chip->base;    if (gpio >= chip->ngpio)        goto fail;            //确保GPIO已申请    status = gpio_ensure_requested(desc, gpio);    if (status )        goto fail;    //到这里可以确保GPIO是有效的    spin_unlock_irqrestore(&gpio_lock, flags);    might_sleep_if(chip->can_sleep);    //status=0    if (status) {        status = chip->request(chip, gpio);        if (status ) {            pr_debug("GPIO-%d: chip request fail, %d\n",chip->base + gpio, status);            goto lose;        }    }    //调用底层的已经设置过的操作,这里即davinci_direction_in    status = chip->direction_input(chip, gpio);    if (status == 0)//返回成功        clear_bit(FLAG_IS_OUT, &desc->flags);//清除输出标志lose:    return status;fail:    spin_unlock_irqrestore(&gpio_lock, flags);    if (status)        pr_debug("%s: gpio-%d status %d\n",__func__, gpio, status);    return status;}int gpio_direction_output(unsigned gpio, int value){    //.........GPIO的检查,同上函数        //调用底层的已经设置过的操作,这里即davinci_direction_out    status = chip->direction_output(chip, gpio, value);    if (status == 0)//返回成功        set_bit(FLAG_IS_OUT, &desc->flags);//设置输出标志lose:    return status;fail:    spin_unlock_irqrestore(&gpio_lock, flags);    if (status)        pr_debug("%s: gpio-%d status %d\n",__func__, gpio, status);    return status;}//根据前边对gpio_chip结构的初始化,会调用\arch\arm\mach-davinci\gpio.c里的函数static int davinci_direction_in(struct gpio_chip *chip, unsigned offset){    return __davinci_direction(chip, offset, false, 0);}static int davinci_direction_out(struct gpio_chip *chip, unsigned offset, int value){    return __davinci_direction(chip, offset, true, value);}static inline int __davinci_direction(struct gpio_chip *chip,unsigned offset, bool out, int value){    struct davinci_gpio_controller *d = chip2controller(chip);    struct davinci_gpio_regs __iomem *g = d->regs;//找到此组GPIO的控制寄存器地址    unsigned long flags;    u32 temp;    u32 mask = 1 ;    spin_lock_irqsave(&d->lock, flags);    temp = __raw_readl(&g->dir);//读出当前寄存器的输入输出方向        if (out) {//为1设置输出        temp &= ~mask;        __raw_writel(mask, value ? &g->set_data : &g->clr_data);//确定是用于输出高电平还是输出低电平    }    else {//为0设置为输入        temp |= mask;    }    __raw_writel(temp, &g->dir);//写入方向寄存器    spin_unlock_irqrestore(&d->lock, flags);    return 0;}2.获取gpio的状态int __gpio_get_value(unsigned gpio){    struct gpio_chip    *chip;    chip = gpio_to_chip(gpio);    WARN_ON(chip->can_sleep);    return chip->get ? chip->get(chip, gpio - chip->base) : 0;//调用davinci_gpio_get}static int davinci_gpio_get(struct gpio_chip *chip, unsigned offset){    struct davinci_gpio_controller *d = chip2controller(chip);    struct davinci_gpio_regs __iomem *g = d->regs;    return (1 ) & __raw_readl(&g->in_data);}3.设置GPIO的值void __gpio_set_value(unsigned gpio, int value){    struct gpio_chip    *chip;    chip = gpio_to_chip(gpio);    WARN_ON(chip->can_sleep);    chip->set(chip, gpio - chip->base, value);//调用davinci_gpio_set}static void davinci_gpio_set(struct gpio_chip *chip, unsigned offset, int value){    struct davinci_gpio_controller *d = chip2controller(chip);    struct davinci_gpio_regs __iomem *g = d->regs;    __raw_writel((1 ), value ? &g->set_data : &g->clr_data);}六、GPIO驱动编写1.首先要申请GPIO口2.注册设备3.创建GPIO的sysfs相关文件#define GPIO_MAJOR 199         // major device NO.#define GPIO_MINOR 0         // minor device NO.#define DEVICE_NAME "omapl138_gpios" /*定义设备驱动的名字,或设备节点名称*/#define SET_OUTPUT_LOW 0#define SET_OUTPUT_HIGH 1#define GET_VALUE 2#define SET_INPUT 3static struct class *gpio_class;static struct gpio gpio_array[] ={    /*{ GPIO_TO_PIN(0, 0), GPIOF_OUT_INIT_LOW,     "RTU_WDI_SIGNAL" },will request fail*/    { GPIO_TO_PIN(0, 1), GPIOF_OUT_INIT_HIGH, "RTU_PLC_BAK_IO1"},    { GPIO_TO_PIN(0, 2), GPIOF_OUT_INIT_LOW,     "RTU_CHG_EN" },    { GPIO_TO_PIN(0, 3), GPIOF_IN,         "RTU_CHG_PG" },    { GPIO_TO_PIN(0, 5), GPIOF_IN,         "RTU_USB_OC_OUT" },    { GPIO_TO_PIN(0, 6), GPIOF_OUT_INIT_LOW,     "RTU_RUN_IND_LED" },    { GPIO_TO_PIN(1, 10), GPIOF_IN,         "RTU_TSC_BUSY"},    { GPIO_TO_PIN(1, 11), GPIOF_IN,        "RTU_PENIRQn" },    { GPIO_TO_PIN(1, 12), GPIOF_OUT_INIT_LOW, "RTU_uP_Q26x_RESET" },    { GPIO_TO_PIN(1, 13), GPIOF_OUT_INIT_HIGH, "RTU_uP_GPRS_PWR_EN" },    { GPIO_TO_PIN(1, 14), GPIOF_OUT_INIT_HIGH, "RTU_uP_Q26x_ON/OFF" },    { GPIO_TO_PIN(2, 1), GPIOF_OUT_INIT_LOW, "RTU_PLC_Reset" },    { GPIO_TO_PIN(2, 2), GPIOF_OUT_INIT_LOW, "RTU_PLC_T_Reg" },    { GPIO_TO_PIN(2, 4), GPIOF_OUT_INIT_LOW, "RTU_PLC_BAK_IO2" },    { GPIO_TO_PIN(2, 5), GPIOF_OUT_INIT_LOW, "RTU_RS485_RE" },    { GPIO_TO_PIN(2, 15), GPIOF_OUT_INIT_HIGH, "RTU_CHPWR_CS" },    { GPIO_TO_PIN(3, 9), GPIOF_OUT_INIT_HIGH, "RTU_RS485_DE" },    { GPIO_TO_PIN(6, 1), GPIOF_OUT_INIT_HIGH, "RTU_uP_VPIF_CLKO3" },    { GPIO_TO_PIN(6, 9), GPIOF_IN,         "RTU_KEY_IN2" },    { GPIO_TO_PIN(6, 11), GPIOF_IN,        "RTU_ALARM_IN5" },    { GPIO_TO_PIN(6, 15), GPIOF_OUT_INIT_HIGH,"RTU_uP_RESETOUTn" },};static int gpio_open(struct inode *inode,struct file *file){    printk(KERN_WARNING"gpio open success!\n");    return 0;}static int gpio_release(struct inode *inode, struct file *filp){  printk (KERN_ALERT "Device gpio released\n");  return 0;}static int gpio_read(struct file*f,char *dst,size_t size,loff_t*offset){    unsigned char num;    __copy_to_user(&num,dst,1);#ifdef DEBUG     printk("__copy_to_user:%d\n",num);#endif    return 0;}static int gpio_write(struct file*f,const char *src,size_t size,loff_t *offset){     unsigned char num;     __copy_from_user(&num,src,1);#ifdef DEBUG     printk("__copy_from_user:%d\n",num);#endif     return 0;}static long gpio_ioctl(struct file *file,unsigned int cmd,unsigned long gpio){    int i;    unsigned long gpio_num = (gpio/100)*16+gpio%100;    for (i = 0; i (gpio_array); i++) {        if(gpio_array[i].gpio == gpio_num)            goto valid_gpio;    }    return -1;        valid_gpio:    switch(cmd)//cmd表示应用程序传入的 GPIO 动作    {        case SET_OUTPUT_LOW://0        {            gpio_direction_output(gpio_num, 0);            break;        }        case SET_OUTPUT_HIGH://1        {            gpio_direction_output(gpio_num, 1);            break;        }        case GET_VALUE://2        {            return gpio_get_value(gpio_num);            }        case SET_INPUT://3        {            gpio_direction_input(gpio_num);            break;        }        default:        {            printk(KERN_EMERG "GPIO command mistake!!!\n");            break;        }    }    return 0;}        static const struct file_operations gpio_fops ={  .owner = THIS_MODULE,  .open = gpio_open,  .release = gpio_release,  .read = gpio_read,  .write = gpio_write,  .unlocked_ioctl = gpio_ioctl,};static int __init gpio_init(void) /*内核初始化会调用该函数*/{    int ret;        ret = gpio_request_array(gpio_array, ARRAY_SIZE(gpio_array));    if (ret )    {        printk(KERN_EMERG "GPIO request failed\n");        goto request_failed;    }        dev_t my_dev_no;    struct cdev *gpio_cdev;    gpio_cdev = cdev_alloc();    if(gpio_cdev == NULL)    {        printk(KERN_EMERG "Cannot alloc cdev\n");        goto request_failed;    }    cdev_init(gpio_cdev,&gpio_fops);    gpio_cdev->owner=THIS_MODULE;    int result=alloc_chrdev_region(&my_dev_no,0,1,DEVICE_NAME);    if(result )    {        printk(KERN_EMERG "alloc_chrdev_region failed\n");        goto request_failed;    }    ret=cdev_add(gpio_cdev,my_dev_no,1);          ret = register_chrdev(GPIO_MAJOR, DEVICE_NAME, &gpio_fops);//驱动字符设备     if(ret )     {    printk(KERN_EMERG "GPIO register failed\n");    goto request_failed;     }        //在sysfs文件系统下创建一个类  gpio_class = class_create(THIS_MODULE, DEVICE_NAME);  //device_create-->device_create_vargs-->device_register创建相应的sysfs文件(如dev文件),用于udev根据sysfs文件系统下的dev文件创建设备节点    device_create(gpio_class, NULL, MKDEV(GPIO_MAJOR, GPIO_MINOR), NULL, DEVICE_NAME);    return ret;    request_failed:    gpio_free_array(gpio_array, ARRAY_SIZE(gpio_array));    return ret;}static void __exit gpio_exit(void){    device_destroy(gpio_class, MKDEV(GPIO_MAJOR, GPIO_MINOR));  class_unregister(gpio_class);  class_destroy(gpio_class);  unregister_chrdev(GPIO_MAJOR, DEVICE_NAME);}module_init(gpio_init);module_exit(gpio_exit);MODULE_LICENSE("GPL");MODULE_VERSION ("v2.0");MODULE_AUTHOR("wbl ");MODULE_DESCRIPTION("OMAPL138 GPIO driver");
11-17 04:00