复制简介 P61

关系型数据库通常会使用一个主服务器 (master) 向多个从服务器 (slave) 发送更新,并使用从服务器来处理所有读请求。 Redis 也采用了同样的方法实现自己的复制特性,并将其用作扩展性能的一种手段。 P69

在接收到主服务器发送的数据初始副本 (initial copy of the data) 之后,客户端每次向主服务器进行写入时,从服务器都会实时地得到更新。 P69

复制 P62

对于一个正在运行的 Redis 服务器,用户可以通过发送 SLAVEOF NO ONE 命令来让服务器终止复制操作,不再接受主服务器的数据更新;也可以通过发送 SLAVEOF host port 命令来让服务器开始复制一个新的主服务器。 P69

配置选项
# 设置本机为指定服务器的从服务器
#
# slaveof <master-host> <master-port>

# 当主服务器设置了密码保护时(用 requirepass 指定的密码)
# 从服务器服务连接主服务器需要设置相应的密码
#
# masterauth <master-password>


# 当从服务器 与主服务器失去连接 或者 正在进行复制 时
# yes: 从服务器会继续响应客户端的请求(默认 yes)
# no: 除了 INFO 和 SLAVOF 命令之外的任何请求都会
#     返回一个错误 "SYNC with master in progress"
#
slave-serve-stale-data yes

# 从服务器每隔一定时间会向主服务器发送 ping
# 默认 10 秒
#
# repl-ping-slave-period 10

# ping 回复 或 主服务器批量数据传输 超时时长
# 默认 60 秒
# 确保 repl-timeout 大于 repl-ping-slave-period
#
# repl-timeout 60
从服务器连接主服务器时的步骤 P70

在实际中最好让主服务器只使用 50% ~ 65% 的内存,留下 30% ~ 45% 的内存用于执行 BGSAVE 命令和创建记录写命令的缓冲区。 P70

从服务器在进行同步时,会清空自己的所有数据。 P70

Redis 不支持主主复制 (master-master replication) P71

当一个从服务器连接一个已有的主服务器时,有时可以重用已有的快照文件: P71

  • 步骤 3 尚未执行:所有从服务器都会接收到相同的快照文件和相同的缓冲区写命令
  • 步骤 3 正在执行或已经执行完毕:当主服务器与比较早进行连接的从服务器执行完复制所需的 5 个步骤之后,主服务器会与新连接的从服务器执行一次新的步骤 1 至步骤 5
主从链 P71

Redis 的主服务器和从服务器没有什么特别不同的地方,所以从服务器也可以拥有自己的从服务器,并由此形成主从链 (master/slave chaining) 。 P71

不过,如果从服务器 X 拥有从服务器 Y ,那么当从服务器 X 在执行步骤 4 时,它将断开与从服务器 Y 的连接,导致从服务器 Y 需要重新连接并重新同步。 P71

当读请求比写请求重要,且读请求的数量远远超过一台 Redis 服务器可以处理的范围时,就需要添加新的从服务器来处理读请求。随着负载不断上升,主服务器可能会无法快速地更新所有从服务器,或者因为重新连接和重新同步从服务器而导致系统超载。为了缓解这个问题,可以创建一个由 Redis 主从节点 (master/slave node) 组成的中间层来分担主服务器的复制工作。 P71

通过同时使用复制和 AOF 持久化,用户可以增强 Redis 对于系统崩溃的抵抗能力。 P73

处理系统故障

验证快照文件和 AOF 文件

redis-check-aof [--fix] <file.aof> 可以检查 AOF 文件,并且可以进行修复:将第一个出错命令(大部分情况下在文件末尾)及之后的所有命令删除。 P74

redis-check-dump <dump.rdb> 可以检查快照文件。快照文件目前无法进行修复,因为快照文件本身进行了压缩。 P74

事务

Redis 事务的作用: P76

  • 防止数据出错
  • 在某些情况下提升性能。利用事务一次性发送多个命令,然后等待所有回复出现实现流水线 (pipeline)。通过减少客户端与 Redis 服务器之间的网络通信次数来提升 Redis 在执行多个命令时的性能。

关系数据库事务与 Redis 事务的区别: P76

  • 关系数据库:先向数据库服务器发送 BEGIN ,然后执行各个相互一致 (consistent) 的读写操作,最后可以选择发送 COMMIT 来确认之前的修改,或者发送 ROLLBACK 来放弃之前的修改。
  • Redis :以特殊命令 MULTI 开始,然后传入多个命令,最后以 EXEC 结束,并依次执行传入的命令。Redis 事务不能以一致的形式读取数据,使得某一类型的问题难以解决,且无法实现二阶段提交。

通过使用 WATCH, MULTI/EXEC, UNWATCH/DISCARD 等命令,程序可以在执行某些重要操作时,通过确保自己正在使用的数据没有发生变化来避免出错。 P78

  • WATCH: 使用 WATCh 对键进行监视之后,直到用户执行 EXEC 的这段时间里面,如果有其他客户端抢先对任何被监视的键进行了替换、更新或删除等操作,那么当用户尝试执行 EXEC 时,事务将失败并返回一个错误。(之后用户可选择重试事务或者放弃事务)
  • UNWATCH: 可以在 WATCH 执行之后、 MULTI 执行之前对连接进行重置 (reset)
  • DISCARD: 可以在 MULTI 执行之后、 EXEC 执行之前对连接进行重置,即取消 WATCH 并清空所有已入队命令

为什么 Redis 没有实现典型的加锁功能? P82

  • 加锁是悲观锁,持有锁的客户端运行越慢,等待解锁的客户端被阻塞的时间越长
  • WATCH 是乐观锁,客户端不必等待取得锁,只需要在事务执行失败时重试即可,乐观锁可以提高并发能力

非事务型流水线 (non-transactional pipeline)

对于无需事务的大量操作可以使用非事务型流水线,可以避免事务消耗资源。

Python 中通过修改入参即可将事务改为非事务型流水线,而 Go 中根据具体框架的不同,可能需要手动封装流水线的处理逻辑。

性能优化

要对 Redis 的性能进行优化,首先需要弄清楚各种类型的 Redis 命令能跑多块,而这一点可以通过调用 Redis 附带的性能测试程序 redis-benchmark 得知。 P85

切记不要将输出结果看作是应用程序的实际性能,因为 redis-benchmark 不会处理执行命令所获得的命令回复,所以它节约了大量用于对命令回复进行语法分析的时间。 P86

可能影响性能的原因 P86
  • 未使用流水线:可视情况适当使用流水线
  • 对于每个命令或每组命令都创建了新的连接:使用连接池重用 Redis 连接
  • Redis 的数据结构或命令不合理(value 非常大,使用 keys, hgetall 等):优化数据结构和命令
01-27 12:11