论文信息

1 Introduction

  众多图嵌入方法关注于保存图结构或最小化重构损失,忽略了隐表示的嵌入分布形式,因此本文提出对抗正则化框架(adversarially regularized framework)。

2 Method

  ARGA 框架如下:

  论文解读(ARVGA)《Learning Graph Embedding with Adversarial Training Methods》-LMLPHP

  组成部分:

    • Graph convolutional autoencoder
    • Adversarial regularization

2.1 Graph Convolutional Autoencoder

  一个频谱卷积函数 $f\left(\mathbf{Z}^{(l)}, \mathbf{A} \mid \mathbf{W}^{(l)}\right)$ :

    $\mathbf{Z}^{(l+1)}=f\left(\mathbf{Z}^{(l)}, \mathbf{A} \mid \mathbf{W}^{(l)}\right)  \quad\quad\quad(1)$

  采用GCN :

    $f\left(\mathbf{Z}^{(l)}, \mathbf{A} \mid \mathbf{W}^{(l)}\right)=\phi\left(\widetilde{\mathbf{D}}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{Z}^{(l)} \mathbf{W}^{(l)}\right) \quad\quad\quad(2)$

  图编码器

    $\mathbf{Z}^{(1)}=f_{\text {Relu }}\left(\mathbf{X}, \mathbf{A} \mid \mathbf{W}^{(0)}\right)  \quad\quad\quad(3)$
    $\mathbf{Z}^{(2)}=f_{\text {linear }}\left(\mathbf{Z}^{(1)}, \mathbf{A} \mid \mathbf{W}^{(1)}\right) \quad\quad\quad(4)$

  我们的图卷积编码器 $\mathcal{G}(\mathbf{Z}, \mathbf{A})=   q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A}) $ 将图结构和节点内容编码为一个表示的 $\mathbf{Z}=q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})=\mathbf{Z}^{(2)}$。

    $q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})=\prod\limits_{i=1}^{n} q\left(\mathbf{z}_{\mathbf{i}} \mid \mathbf{X}, \mathbf{A}\right) \quad\quad\quad(5)$
06-07 09:29