Channel的注册是在SelectableChannel中定义的:

1 public abstract SelectionKey register(Selector sel, int ops, Object att)
2         throws ClosedChannelException;
3
4 public final SelectionKey register(Selector sel, int ops)
5         throws ClosedChannelException {
6     return register(sel, ops, null);
7 }

而其具体实现是在AbstractSelectableChannel中:

 1 public final SelectionKey register(Selector sel, int ops,
 2                                        Object att)
 3         throws ClosedChannelException {
 4     synchronized (regLock) {
 5         if (!isOpen())
 6             throw new ClosedChannelException();
 7         if ((ops & ~validOps()) != 0)
 8             throw new IllegalArgumentException();
 9         if (blocking)
10             throw new IllegalBlockingModeException();
11         SelectionKey k = findKey(sel);
12         if (k != null) {
13             k.interestOps(ops);
14             k.attach(att);
15         }
16         if (k == null) {
17             // New registration
18             synchronized (keyLock) {
19                 if (!isOpen())
20                     throw new ClosedChannelException();
21                 k = ((AbstractSelector)sel).register(this, ops, att);
22                 addKey(k);
23             }
24         }
25         return k;
26     }
27 }

其中regLock和keyLock是两个对象,分别用来做注册锁和key集合锁

1 // Lock for key set and count
2 private final Object keyLock = new Object();
3
4 // Lock for registration and configureBlocking operations
5 private final Object regLock = new Object();

isOpen判断Channel是否关闭,只有在Channel关闭后才会令isOpen返回false;接着检验传入进来的ops(SelectionKey的状态,包括OP_READ、OP_WRITE、OP_CONNECT、OP_ACCEPT四种)是否满足条件,validOps方法在不同的Channel子类中有不同的实现:
SocketChannel中:

1 public final int validOps() {
2     return (SelectionKey.OP_READ
3             | SelectionKey.OP_WRITE
4             | SelectionKey.OP_CONNECT);
5 }

那么ops只要是上面三种状态的任意一种或者一种以上,再和validOps的结果运算都为0,若是其他值则抛出IllegalArgumentException异常;
ServerSocketChannel中:

1 public final int validOps() {
2     return SelectionKey.OP_ACCEPT;
3 }

和上面同理ServerSocketChannel在注册时,只能传入OP_ACCEPT状态。

回到AbstractSelectableChannel的register方法,接下来是对blocking成员的判断,

1 boolean blocking = true;

这是很重要的一步,因为NIO是既支持阻塞模式也支持非阻塞模式,但是若使用非阻塞模式,那么必然需要Selector的轮询,若是在注册Selector之前没有通过Channel调用configureBlocking方法设置为非阻塞模式,那么就会在此时注册时抛出IllegalBlockingModeException异常。


configureBlocking方法的实现也是在AbstractSelectableChannel中:

 1 public final SelectableChannel configureBlocking(boolean block)
 2         throws IOException {
 3     synchronized (regLock) {
 4         if (!isOpen())
 5             throw new ClosedChannelException();
 6         if (blocking == block)
 7             return this;
 8         if (block && haveValidKeys())
 9             throw new IllegalBlockingModeException();
10         implConfigureBlocking(block);
11         blocking = block;
12     }
13     return this;
14 }

前两个判断逻辑都很简单,在Channel打开的情况下根据参数block设置阻塞或者非阻塞模式,注意到第二个判断说明重复设置相同的阻塞模式直接返回,而第三个判断则表明block 和blocking不相等,那么就是在之前设置为了非阻塞模式,而haveValidKeys则间接表明已经完成了注册,并且已经拥有了自己的SelectionKey集合,此时再设置为非阻塞模式就会引起IllegalBlockingModeException异常。

haveValidKeys方法:

 1 private SelectionKey[] keys = null;
 2 private int keyCount = 0;
 3
 4 private boolean haveValidKeys() {
 5     synchronized (keyLock) {
 6         if (keyCount == 0)
 7             return false;
 8         for (int i = 0; i < keys.length; i++) {
 9             if ((keys[i] != null) && keys[i].isValid())
10                 return true;
11         }
12         return false;
13     }
14 }

逻辑比较简单,先检查keys的个数,为0直接返回没有可用的SelectionKey,接着遍历keys集合,找到一个可用的就返回true,其中isValid方法在AbstractSelectionKey中实现:

1 private volatile boolean valid = true;
2
3 public final boolean isValid() {
4     return valid;
5 }

可以看到在初始化时valid = true就代表自身是可用状态,当SelectionKey执行cancel方法撤销时或者在Channel关闭时的撤销都会改变:

 1 public final void cancel() {
 2     // Synchronizing "this" to prevent this key from getting canceled
 3     // multiple times by different threads, which might cause race
 4     // condition between selector's select() and channel's close().
 5     synchronized (this) {
 6         if (valid) {
 7             valid = false;
 8             ((AbstractSelector)selector()).cancel(this);
 9         }
10     }
11 }

Channel关闭时的撤销在后续的博客给出,这里先不讨论。

在configureBlocking中的implConfigureBlocking是一个抽象方法,具体的实现和使用的Channel有关,ServerSocketChannel和SocketChannel的实现分别是在ServerSocketChannelImpl和
SocketChannelImpl中,这两个的实现方式也是完全一样:

1 protected void implConfigureBlocking(boolean var1) throws IOException {
2     IOUtil.configureBlocking(this.fd, var1);
3 }

而IOUtil的configureBlocking方法是一个native方法,主要是对底层的操作,这里就不讨论了。


继续回到AbstractSelectableChannel的register方法,在对阻塞模式判断完毕后,调用findKey方法:

 1 private SelectionKey findKey(Selector sel) {
 2     synchronized (keyLock) {
 3         if (keys == null)
 4             return null;
 5         for (int i = 0; i < keys.length; i++)
 6             if ((keys[i] != null) && (keys[i].selector() == sel))
 7                 return keys[i];
 8         return null;
 9     }
10 }

在同步块中,首先判断keys是否初始化过,如果是第一次注册,那么keys必定为null,直接就返回null结束;否则已经注册过,则遍历keys这个SelectionKey集合,找的传入的Selector 持有的SelectionKey后直接返回该SelectionKey对象,若没找到则返回null;

接着对findKey方法的返回值k判断
若k不为null,则说明注册过这个Selector ,先调用interestOps方法,该方法是在SelectionKeyImpl中实现的:

1 public SelectionKey interestOps(int var1) {
2     this.ensureValid();
3     return this.nioInterestOps(var1);
4 }


首先通过ensureValid检验当前的SelectionKey是否可用(没有被撤销,调用cancel方法会撤销):

1 private void ensureValid() {
2     if (!this.isValid()) {
3         throw new CancelledKeyException();
4     }
5 }

比较简单,使用之前说过的isValid方法,检查当前SelectionKey是否可用
nioInterestOps方法:

1 public SelectionKey nioInterestOps(int var1) {
2     if ((var1 & ~this.channel().validOps()) != 0) {
3         throw new IllegalArgumentException();
4     } else {
5         this.channel.translateAndSetInterestOps(var1, this);
6         this.interestOps = var1;
7         return this;
8     }
9 }

这个判断和一开始的register中的检查ops状态是否合法一样,若是合法需要调用Channel的translateAndSetInterestOps方法,同样不同的Channel有不同的实现:


SocketChannel是在SocketChannelImpl中实现的:

 1 public void translateAndSetInterestOps(int var1, SelectionKeyImpl var2) {
 2     int var3 = 0;
 3     if ((var1 & 1) != 0) {
 4         var3 |= Net.POLLIN;
 5     }
 6
 7     if ((var1 & 4) != 0) {
 8         var3 |= Net.POLLOUT;
 9     }
10
11     if ((var1 & 8) != 0) {
12         var3 |= Net.POLLCONN;
13     }
14
15     var2.selector.putEventOps(var2, var3);
16 }

之前说过SelectionKey有四种状态:

1 public static final int OP_READ = 1 << 0;              // 0
2 public static final int OP_WRITE = 1 << 2;             // 4
3 public static final int OP_CONNECT = 1 << 3;         // 8
4 public static final int OP_ACCEPT = 1 << 4;          // 16

正如之前所说的SocketChannel只允许存在OP_READ、OP_WRITE 、OP_CONNECT 这三种状态,所以上面就根据这三种状态得到对应的POLL事件,最后给SelectionKey绑定的Selector设置POLL事件响应。

putEventOps的实现是在WindowsSelectorImpl中:

 1 public void putEventOps(SelectionKeyImpl var1, int var2) {
 2     Object var3 = this.closeLock;
 3     synchronized(this.closeLock) {
 4         if (this.pollWrapper == null) {
 5             throw new ClosedSelectorException();
 6         } else {
 7             int var4 = var1.getIndex();
 8             if (var4 == -1) {
 9                 throw new CancelledKeyException();
10             } else {
11                 this.pollWrapper.putEventOps(var4, var2);
12             }
13         }
14     }
15 }

还是一样若是Selector关闭则抛出异常,否则得到SelectionKey的index(在Selector中存储的SelectionKey数组的下标),判断下标的合法性,然后给pollWrapper设置事件响应,而pollWrapper的putEventOps方法是一个native方法,这里就不仔细讨论了。

pollWrapper是存放socket句柄fdVal和事件响应events的,用八个位来存储一对。

而ServerSocketChannel的translateAndSetInterestOps实现和上面一样,只不过只负责OP_ACCEPT 状态:

1 public void translateAndSetInterestOps(int var1, SelectionKeyImpl var2) {
2     int var3 = 0;
3     if ((var1 & 16) != 0) {
4         var3 |= Net.POLLIN;
5     }
6
7     var2.selector.putEventOps(var2, var3);
8 }


还是回到AbstractSelectableChannel的register方法中,interestOps调用结束后调用SelectionKey的attach方法:

 1 private volatile Object attachment = null;
 2
 3 private static final AtomicReferenceFieldUpdater<SelectionKey,Object>
 4         attachmentUpdater = AtomicReferenceFieldUpdater.newUpdater(
 5             SelectionKey.class, Object.class, "attachment"
 6         );
 7
 8 public final Object attach(Object ob) {
 9     return attachmentUpdater.getAndSet(this, ob);
10 }

这里直接使用了原子更新器对象来更新attachment 。

k不为null的情况解决了,接下来就是解决k为null的情况,即第一次注册,或者是再次注册没有找到和Selector对应的的SelectionKey。
首先在同步块内还是先检查Channel是否关闭,若没有关闭,调用AbstractSelector的register方法完成Selector对SelectionKey的注册:
而这个register方法的实现是在SelectorImpl中:

 1 protected final SelectionKey register(AbstractSelectableChannel var1, int var2, Object var3) {
 2     if (!(var1 instanceof SelChImpl)) {
 3         throw new IllegalSelectorException();
 4     } else {
 5         SelectionKeyImpl var4 = new SelectionKeyImpl((SelChImpl)var1, this);
 6         var4.attach(var3);
 7         Set var5 = this.publicKeys;
 8         synchronized(this.publicKeys) {
 9             this.implRegister(var4);
10         }
11
12         var4.interestOps(var2);
13         return var4;
14     }
15 }

检查Channel类型是否符合,然后直接创建一个SelectionKeyImpl对象:

1 final SelChImpl channel;
2 public final SelectorImpl selector;
3
4 SelectionKeyImpl(SelChImpl var1, SelectorImpl var2) {
5     this.channel = var1;
6     this.selector = var2;
7 }

SelectionKeyImpl构造很简单,直接给两个成员赋值;然后调用SelectionKeyImpl对象的attach方法更新附件,接着在同步块中调用抽象方法implRegister
implRegister方法是在WindowsSelectorImpl中实现的:

 1 protected void implRegister(SelectionKeyImpl var1) {
 2     Object var2 = this.closeLock;
 3     synchronized(this.closeLock) {
 4         if (this.pollWrapper == null) {
 5             throw new ClosedSelectorException();
 6         } else {
 7             this.growIfNeeded();
 8             this.channelArray[this.totalChannels] = var1;
 9             var1.setIndex(this.totalChannels);
10             this.fdMap.put(var1);
11             this.keys.add(var1);
12             this.pollWrapper.addEntry(this.totalChannels, var1);
13             ++this.totalChannels;
14         }
15     }
16 }

首先调用growIfNeeded方法,因为Selector选择器解决非阻塞,就是使用轮询的方式,它存储了一个SelectionKeyImpl数组,而SelectionKeyImpl记录了channel以及SelectionKey的状态,那么就是根据SelectionKey的状态和channel来完成通信。由于在服务端的时候需要和多个客户端连接,那么这个数组必定是动态维持的,所以就考虑到扩容。

1 private SelectionKeyImpl[] channelArray = new SelectionKeyImpl[8];
2  private int totalChannels = 1;

可以看到这个channelArray一开始固定初始化大小是8,而totalChannels 一开始就是1,这是为了方便后面的操作,channelArray 中下标为0的元素没用使用,直接从下标为1开始。

growIfNeeded方法:

 1 private void growIfNeeded() {
 2     if (this.channelArray.length == this.totalChannels) {
 3         int var1 = this.totalChannels * 2;
 4         SelectionKeyImpl[] var2 = new SelectionKeyImpl[var1];
 5         System.arraycopy(this.channelArray, 1, var2, 1, this.totalChannels - 1);
 6         this.channelArray = var2;
 7         this.pollWrapper.grow(var1);
 8     }
 9
10     if (this.totalChannels % 1024 == 0) {
11         this.pollWrapper.addWakeupSocket(this.wakeupSourceFd, this.totalChannels);
12         ++this.totalChannels;
13         ++this.threadsCount;
14     }
15
16 }

因为totalChannels 是从1开始,所以直接判断totalChannels是否达到了数组长度,若已达到就需要扩容,可以看到每次扩容都是原来两倍,从原数组下标为1的地方开始一直到最后一个元素,拷贝到新数组下标为1的位置上,再更新channelArray,同时还要给pollWrapper扩容。

pollWrapper的grow方法:

 1 void grow(int var1) {
 2     PollArrayWrapper var2 = new PollArrayWrapper(var1);
 3
 4     for(int var3 = 0; var3 < this.size; ++var3) {
 5         this.replaceEntry(this, var3, var2, var3);
 6     }
 7
 8     this.pollArray.free();
 9     this.pollArray = var2.pollArray;
10     this.size = var2.size;
11     this.pollArrayAddress = this.pollArray.address();
12 }
13
14 void replaceEntry(PollArrayWrapper var1, int var2, PollArrayWrapper var3, int var4) {
15     var3.putDescriptor(var4, var1.getDescriptor(var2));
16     var3.putEventOps(var4, var1.getEventOps(var2));
17 }

逻辑很简单,就是把原来的socket句柄fdVal和事件响应events复制到新的PollArrayWrapper对象中,且位置不变。

再回到growIfNeeded,可以看到第二个判断是检查totalChannels是否达到了1024的整数次方(totalChannels初始是1,排除0),若是则需要pollWrapper.addWakeupSocket(this.wakeupSourceFd, this.totalChannels)这个操作在WindowsSelectorImpl构造方法时也被调用:

1 WindowsSelectorImpl(SelectorProvider var1) throws IOException {
2     super(var1);
3     this.wakeupSourceFd = ((SelChImpl)this.wakeupPipe.source()).getFDVal();
4     SinkChannelImpl var2 = (SinkChannelImpl)this.wakeupPipe.sink();
5     var2.sc.socket().setTcpNoDelay(true);
6     this.wakeupSinkFd = var2.getFDVal();
7     this.pollWrapper.addWakeupSocket(this.wakeupSourceFd, 0);
8 }

addWakeupSocket方法:

1 void addWakeupSocket(int var1, int var2) {
2     this.putDescriptor(var2, var1);
3     this.putEventOps(var2, Net.POLLIN);
4 }

可以看到设置的事件响应是Net.POLLIN,其实就对应OP_READ,而这个wakeupSourceFd是初始化时就设置的wakeupPipe的source的描述符fdVal,即一开始建立的ServerSocketChannel端的SocketChannel(SourceChannel)的描述符fdVal,之前说过Selector的select方法是一个阻塞的操作,调用select方法时只有注册在Selector上的Channel有事件就绪时才会被唤醒;如果说有很多Channel注册了,但是只有一个Channel事件就绪,那么岂不是要做很多无用的轮询,而fdVal就是解决这个问题,实际上交给操作系统的轮询的是wakeupSourceFd,操作系统在轮询pollWrapper中的这些wakeupSourceFd描述符后就能知道哪些wakeupSourceFd上有事件就绪。
可以看到在growIfNeeded后面有一个++this.threadsCount操作,实际上Channel事件的轮询是交给线程来做的,WindowsSelectorImpl中有如下成员:

1 private int threadsCount = 0;
2 private final List<WindowsSelectorImpl.SelectThread> threads = new ArrayList();

SelectThread是Thread的子类,threadsCount记录轮询线程个数。
那么就有这种关系,在pollWrapper中,总是以wakeupSourceFd描述符开头,后面跟着1024个Channel的描述,再往后就又是这种形式;那么操作系统在轮询pollWrapper中的这些wakeupSourceFd知道哪些wakeupSourceFd上有事件就绪,进而得到pollWrapper中的wakeupSourceFd起始的偏移地址,每个线程只负责轮询1024个Channel的描述,哪个wakeupSourceFd上有事件就绪,就让负责的线程去轮询,这样就减少了不必要的轮询。
所以在totalChannels达到1024的整数次方时,需要增加新的轮询线程。

growIfNeeded方法结束,channelArray中增添新的SelectionKeyImpl,并且设置下标(呼应前面获取下标的操作),然后将SelectionKeyImpl存放在fdMap
fdMap保存的时Channel的描述符和SelectionKeyImpl的映射关系:

 1 private static final class MapEntry {
 2     SelectionKeyImpl ski;
 3     long updateCount = 0L;
 4     long clearedCount = 0L;
 5
 6     MapEntry(SelectionKeyImpl var1) {
 7        this.ski = var1;
 8     }
 9 }
10
11 private static final class FdMap extends HashMap<Integer, WindowsSelectorImpl.MapEntry> {
12     static final long serialVersionUID = 0L;
13
14     private FdMap() {
15     }
16
17     private WindowsSelectorImpl.MapEntry get(int var1) {
18         return (WindowsSelectorImpl.MapEntry)this.get(new Integer(var1));
19     }
20
21     private WindowsSelectorImpl.MapEntry put(SelectionKeyImpl var1) {
22         return (WindowsSelectorImpl.MapEntry)this.put(new Integer(var1.channel.getFDVal()), new WindowsSelectorImpl.MapEntry(var1));
23     }
24
25     private WindowsSelectorImpl.MapEntry remove(SelectionKeyImpl var1) {
26         Integer var2 = new Integer(var1.channel.getFDVal());
27         WindowsSelectorImpl.MapEntry var3 = (WindowsSelectorImpl.MapEntry)this.get(var2);
28         return var3 != null && var3.ski.channel == var1.channel ? (WindowsSelectorImpl.MapEntry)this.remove(var2) : null;
29     }
30 }

代码逻辑都很简单,就不详细介绍了。

接着调用keys的add方法,keys是父类SelectorImpl的成员:

1 protected HashSet<SelectionKey> keys = new HashSet();

接着调用pollWrapper的addEntry方法:

1 void addEntry(int var1, SelectionKeyImpl var2) {
2     this.putDescriptor(var1, var2.channel.getFDVal());
3 }

可以看到仅仅是添加了channel的描述符fdVal,还没有设置事件响应,最后totalChannels自增implRegister方法结束。

回到SelectorImpl的register方法,在implRegister方法结束后,调用SelectionKeyImpl的interestOps方法,前面说过的,在此时设置了事件响应,最后返回SelectionKeyImpl对象赋给AbstractSelectableChannel方法中的k,之后调用addKey方法,返回k,register方法调用全部结束。

addKey方法:

 1 private void addKey(SelectionKey k) {
 2     assert Thread.holdsLock(keyLock);
 3     int i = 0;
 4     if ((keys != null) && (keyCount < keys.length)) {
 5         // Find empty element of key array
 6         for (i = 0; i < keys.length; i++)
 7             if (keys[i] == null)
 8                 break;
 9     } else if (keys == null) {
10         keys =  new SelectionKey[3];
11     } else {
12         // Grow key array
13         int n = keys.length * 2;
14         SelectionKey[] ks =  new SelectionKey[n];
15         for (i = 0; i < keys.length; i++)
16             ks[i] = keys[i];
17         keys = ks;
18         i = keyCount;
19     }
20     keys[i] = k;
21     keyCount++;
22 }

逻辑很清晰,首先检查有没有没有使用的key,若存在,直接用k覆盖结束;若keys没有初始化大小为3的数组,先初始化keys,再将k放在下标为0的位置结束;若是keys已经初始化且keyCount == keys.length,就需要给keys扩容,并将原来的元素拷贝,最后将k放在新keys下标为keyCount的位置。

Channel的注册到此全部结束。

05-17 20:36