https://github.com/fuzhenqi

from __future__ import print_function
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random
# Parameters
learning_rate = 0.01
training_epochs = 1000
display_step = 50

#------------------------------------------训练集及参数构造------------------------------------------------------

# Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
                         2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]  #train_X的维度,即训练样本数量

# tf Graph Input
X = tf.placeholder("float")  #定义一个X
Y = tf.placeholder("float")  #定义一个Y

# Set model weights
W = tf.Variable(rng.randn(), name="weight")  #权重W
b = tf.Variable(rng.randn(), name="bias")   #偏置b

# Construct a linear model
pred = tf.add(tf.multiply(X, W), b)   #  Y=WX+b

# Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)  #  损失函数,均方差
# Gradient descent
#  Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

#---------------------------------------------训练-------------------------------------------------------------
# Start training
with tf.Session() as sess:

    # Run the initializer
    sess.run(init)  #参数初始化

    # Fit all training data
    for epoch in range(training_epochs):   #训练批次
        for (x, y) in zip(train_X, train_Y):  #zip将X,Y打包
            sess.run(optimizer, feed_dict={X: x, Y: y}) # 读取X,Y

#--------------------------------------------显示--------------------------------------------------------------

        # Display logs per epoch step
        if (epoch+1) % display_step == 0:   # 每隔50个批次显示一次cost
            c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
            print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
                "W=", sess.run(W), "b=", sess.run(b))

    print("Optimization Finished!")
    training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})  # 训练结束时的cost
    print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')

#-------------------------------------------拟合结果-----------------------------------------------------------

    # Graphic display
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

    # Testing example, as requested (Issue #2)
    test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
    test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])

    print("Testing... (Mean square loss Comparison)")
    testing_cost = sess.run(
        tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
        feed_dict={X: test_X, Y: test_Y})  # same function as cost above
    print("Testing cost=", testing_cost)
    print("Absolute mean square loss difference:", abs(
        training_cost - testing_cost))

    plt.plot(test_X, test_Y, 'bo', label='Testing data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

10-06 11:29