2.3. 估计算法

2.3.1. 直接计算法

给定模型 λ = ( A , B , π ) \lambda=(A,B, \pi) λ=(A,B,π) 和观测序列 O = ( o 1 , o 2 , … , o T ) O=(o_1, o_2,… , o_T) O=(o1,o2,,oT),计算观测序列 O O O 出现的概率 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ)。最直接的方法是按概率公式直接计算。通过列举所有可能的长度为 T T T 的状态序列 S = ( s 1 , s 2 , … , s T ) S= (s_1, s_2,\dots,s_T) S=(s1,s2,,sT),求各个状态序列 S S S 与观测序列 O = ( o 1 , o 2 , … , o T ) O=(o_1,o_2,… ,o_T) O=(o1,o2,,oT) 的联合概率 P ( O , S ∣ λ ) P(O,S \mid \lambda) P(O,Sλ),然后对所有可能的状态序列求和,得到 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ)

状态序列 S = ( s 1 , s 2 , … , s T ) S = (s_1,s_2,\dots,s_T) S=(s1,s2,,sT) 的概率是:
P ( S ∣ λ ) = π s 1 a s 1 s 2 a s 2 s 3 … a s T − 1 s T (1) P(S\mid \lambda) = \pi_{s_1}a_{s_1s_2}a_{s_2s_3}\dots a_{s_{T-1}s_T}\tag{1} P(Sλ)=πs1as1s2as2s3asT1sT(1)
( 1 ) (1) (1) 可以简洁表示为
P ( S ∣ λ ) = π s 1 ∏ t = 1 T − 1 a s t s t + 1 P(S\mid \lambda) = \pi_{s_1} \prod_{t=1}^{T-1} a_{s_{t}s_{t+1}} P(Sλ)=πs1t=1T1astst+1

对固定的状态序列 S = ( s 1 , s 2 , … . , s T ) S= (s_1,s_2,…. ,s_T) S=(s1,s2,.,sT),观测序列 O = ( o 1 , o 2 , … , o T ) O=(o_1,o_2,\dots, o_T) O=(o1,o2,,oT) 的概率是:
P ( O ∣ S , λ ) = b s 1 ( o 1 ) b s 2 ( o 2 ) … b s T ( o T ) (2) P(O\mid S,\lambda) = b_{s_1}(o_1) b_{s_2}(o_2)\dots b_{s_T}(o_T) \tag{2} P(OS,λ)=bs1(o1)bs2(o2)bsT(oT)(2)
( 2 ) (2) (2) 可以简洁表示为
P ( O ∣ S , λ ) = ∏ t = 1 T b s t ( o t ) P(O\mid S,\lambda) = \prod_{t=1}^T b_{s_t}(o_t) P(OS,λ)=t=1Tbst(ot)

O O O S S S 同时出现的联合概率为
P ( O , S ∣ λ ) = P ( O ∣ S , λ ) P ( S ∣ λ ) = π s 1 ∏ t = 1 T b s t ( o t ) ∏ t = 1 T − 1 a s t s t + 1 (3) \begin{aligned} P(O,S\mid \lambda) &= P(O\mid S,\lambda) P(S\mid \lambda) \\ &=\pi_{s_1}\prod_{t=1}^T b_{s_t}(o_t)\prod_{t=1}^{T-1} a_{s_{t}s_{t+1}} \tag{3}\\ \end{aligned} P(O,Sλ)=P(OS,λ)P(Sλ)=πs1t=1Tbst(ot)t=1T1astst+1(3)
对所有可能的状态序列 S S S 求和,得到观测序列 O O O 的概率 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ),即
P ( O ∣ λ ) = ∑ S P ( O , S ∣ λ ) = ∑ S P ( O ∣ S , λ ) P ( S ∣ λ ) = ∑ s 1 ∑ s 2 ⋯ ∑ s T ( π s 1 ∏ t = 1 T b s t ( o t ) ∏ t = 1 T − 1 a s t s t + 1 ) (4) \begin{aligned} P(O\mid \lambda) &=\sum_{S} P(O,S\mid \lambda) \\ &= \sum_{S} P(O\mid S,\lambda)P(S\mid \lambda) \\ &= \sum_{s_1}\sum_{s_2}\dots\sum_{s_T}\left( \pi_{s_1}\prod_{t=1}^T b_{s_t}(o_t)\prod_{t=1}^{T-1} a_{s_{t}s_{t+1}}\right)\tag{4} \\ \end{aligned} P(Oλ)=SP(O,Sλ)=SP(OS,λ)P(Sλ)=s1s2sT(πs1t=1Tbst(ot)t=1T1astst+1)(4)

观察式 ( 4 ) (4) (4),连加对应的时间复杂度为 O ( N T ) O(N^T) O(NT),连乘对应的时间复杂度为 O ( T ) O(T) O(T),所以直接计算法的时间复杂度为 O ( T N T ) O(TN^T) O(TNT),这种算法显然只在概念上可行,但是在计算上不可行。

2.3.2. 前向算法

前向算法(forward algorithm)是一种基于动态规划(dynamic programming)思想计算 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ) 的算法。

定义前向概率。给定隐马尔可夫模型 λ \lambda λ,定义到时刻 t t t 部分观测序列为 o 1 , o 2 , … , o t o_1,o_2,\dots,o_t o1,o2,,ot 且时刻 t t t 对应状态为 q i q_i qi 的概率,记作
α t ( i ) = P ( o 1 , o 2 , … , o t , s t = q i ∣ λ ) (5) \alpha_t(i) = P(o_1,o_2,\dots, o_t,s_t = q_i\mid \lambda) \tag{5} αt(i)=P(o1,o2,,ot,st=qiλ)(5)
由此可知时刻 T T T 的前向概率为
α T ( i ) = P ( O , s T = q i ∣ λ ) \alpha_T(i) = P(O,s_T = q_i\mid \lambda) αT(i)=P(O,sT=qiλ)
因此
P ( O ∣ λ ) = ∑ i = 1 N P ( O , s T = q i ∣ λ ) = ∑ i = 1 N α T ( i ) (6) P(O\mid \lambda) = \sum_{i=1}^N P(O,s_T=q_i\mid \lambda) = \sum_{i=1}^N \alpha_T(i)\tag{6} P(Oλ)=i=1NP(O,sT=qiλ)=i=1NαT(i)(6)
特别地,时刻 1 1 1 的前向概率为
α 1 ( i ) = P ( o 1 , s 1 = q i ∣ λ ) = P ( o 1 ∣ s 1 = q i , λ ) P ( s 1 = q i ∣ λ ) = b i ( o 1 ) π i (7) \begin{aligned} \alpha_1(i) &= P(o_1,s_1 = q_i\mid \lambda) \\ &= P(o_1\mid s_1 = q_i, \lambda) P(s_1 = q_i\mid \lambda) \\ &= b_i(o_1)\pi_i \tag{7} \end{aligned} α1(i)=P(o1,s1=qiλ)=P(o1s1=qi,λ)P(s1=qiλ)=bi(o1)πi(7)
动态规划问题的三个要素,状态保存、状态转移和边界条件。式 ( 5 ) (5) (5) 指明了状态保存的方式,式 ( 6 ) (6) (6) ( 7 ) (7) (7) 为边界条件,其中式 ( 6 ) (6) (6) 为目标,式 ( 7 ) (7) (7) 为初值。还缺少状态转移部分,即递推公式。

利用齐次马尔可夫性假设和观测独立性假设可得,
α t + 1 ( i ) = P ( o 1 , o 2 , … , o t + 1 , s t + 1 = q i ∣ λ ) = ∑ j = 1 N P ( o 1 , o 2 , … , o t + 1 , s t = q j , s t + 1 = q i ∣ λ ) = ∑ j = 1 N P ( o t + 1 ∣ o 1 , o 2 , … , o t , s t = q j , s t + 1 = q i , λ ) P ( o 1 , o 2 , … , o t , s t = q j , s t + 1 = q i ∣ λ ) = ∑ j = 1 N P ( o t + 1 ∣ s t + 1 = q i , λ ) P ( o 1 , o 2 , … , o t , s t = q j , s t + 1 = q i ∣ λ ) = [ ∑ j = 1 N P ( s t + 1 = q i ∣ o 1 , o 2 , … , o t , s t = q j , λ ) P ( o 1 , o 2 , … , o t , s t = q j ∣ λ ) ] P ( o t + 1 ∣ s t + 1 = q i , λ ) = [ ∑ j = 1 N P ( s t + 1 = q i ∣ s t = q j , λ ) P ( o 1 , o 2 , … , o t , s t = q j ∣ λ ) ] P ( o t + 1 ∣ s t + 1 = q i , λ ) = [ ∑ j = 1 N a j i α t ( j ) ] b i ( o t + 1 ) (8) \begin{aligned} \alpha_{t+1}(i) &= P(o_1,o_2,\dots,o_{t+1},s_{t+1}=q_i\mid \lambda) \\ &=\sum_{j=1}^N P(o_1,o_2,\dots,o_{t+1},s_t = q_j,s_{t+1}=q_i\mid \lambda) \\ &=\sum_{j=1}^N P(o_{t+1}\mid o_1,o_2,\dots,o_{t},s_t = q_j,s_{t+1}=q_i,\lambda) P(o_1,o_2,\dots,o_{t},s_t = q_j,s_{t+1}=q_i\mid \lambda) \\ &=\sum_{j=1}^N P(o_{t+1}\mid s_{t+1}=q_i,\lambda) P(o_1,o_2,\dots,o_{t},s_t = q_j,s_{t+1}=q_i\mid \lambda) \\ &= \left[\sum_{j=1}^N P(s_{t+1} = q_i\mid o_1,o_2,\dots,o_{t},s_t = q_j,\lambda) P(o_1,o_2,\dots,o_{t},s_t = q_j\mid \lambda)\right]P(o_{t+1}\mid s_{t+1}=q_i,\lambda) \\ &= \left[\sum_{j=1}^N P(s_{t+1} = q_i\mid s_t = q_j,\lambda) P(o_1,o_2,\dots,o_{t},s_t = q_j\mid \lambda)\right]P(o_{t+1}\mid s_{t+1}=q_i,\lambda) \\ &=\left[\sum_{j=1}^Na_{ji}\alpha_t(j)\right]b_i(o_{t+1})\tag{8} \end{aligned} αt+1(i)=P(o1,o2,,ot+1,st+1=qiλ)=j=1NP(o1,o2,,ot+1,st=qj,st+1=qiλ)=j=1NP(ot+1o1,o2,,ot,st=qj,st+1=qi,λ)P(o1,o2,,ot,st=qj,st+1=qiλ)=j=1NP(ot+1st+1=qi,λ)P(o1,o2,,ot,st=qj,st+1=qiλ)=[j=1NP(st+1=qio1,o2,,ot,st=qj,λ)P(o1,o2,,ot,st=qjλ)]P(ot+1st+1=qi,λ)=[j=1NP(st+1=qist=qj,λ)P(o1,o2,,ot,st=qjλ)]P(ot+1st+1=qi,λ)=[j=1Najiαt(j)]bi(ot+1)(8)
完整算法如下。

输入:   隐 马 尔 科 夫 模 型   λ ,   观 测 序 列   O 过程: \begin{array}{ll} \textbf{输入:}&\space隐马尔科夫模型 \space\lambda,\space 观测序列\space O &&& \\ \textbf{过程:} \end{array} 输入:过程:  λ,  O

1 : for   i = 1 , 2 , … , N   do 2 :      α 1 ( i ) = π i b i ( o 1 )   ; 3 : end   for 4 : for   t = 1 , 2 , … , T − 1   do 5 :      for   i = 1 , 2 , … , N   do 6 :          α t + 1 ( i ) = [ ∑ j = 1 N a j i α t ( j ) ] b i ( o t + 1 )   ; 7 :      end   for 8 : end   for 9 : P = 0   ; 10 : for   i = 1 , 2 , … , N   do 11 :      P = P + α T ( i )   ; 12 : end   for \begin{array}{rl} 1:& \textbf{for}\space i = 1,2,\dots,N \space\textbf{do} \\ 2:& \space\space\space\space \alpha_1(i)=\pi_ib_i(o_1)\space; \\ 3:& \textbf{end} \space \textbf{for} \\ 4:& \textbf{for}\space t = 1,2,\dots,T-1 \space\textbf{do} \\ 5:& \space\space\space\space \textbf{for}\space i = 1,2,\dots,N \space\textbf{do} \\ 6:& \space\space\space\space\space\space\space\space \alpha_{t+1}(i)=\left[\sum\limits_{j=1}^Na_{ji}\alpha_t(j)\right]b_i(o_{t+1}) \space ;\\ 7:& \space\space\space\space \textbf{end} \space \textbf{for} \\ 8:& \textbf{end} \space \textbf{for} \\ 9:& P = 0\space; \\ 10:& \textbf{for}\space i = 1,2,\dots,N \space\textbf{do} \\ 11:& \space\space\space\space P=P+\alpha_T(i)\space; \\ 12:& \textbf{end} \space \textbf{for} \\ \end{array} 1:2:3:4:5:6:7:8:9:10:11:12:for i=1,2,,N do    α1(i)=πibi(o1) ;end forfor t=1,2,,T1 do    for i=1,2,,N do        αt+1(i)=[j=1Najiαt(j)]bi(ot+1) ;    end forend forP=0 ;for i=1,2,,N do    P=P+αT(i) ;end for

输出:   观 测 序 列 概 率   P \begin{array}{l} \textbf{输出:}\space 观测序列概率\space P &&&&&&&&&& \end{array} 输出:  P

算法 1    观测序列概率的前向算法

如图 2 2 2 所示,前向算法实际是基于“状态序列的路径结构”递推计算 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ) 的算法。前向算法高效的关键是其局部计算前向概率,然后利用路径结构将前向概率“递推”到全局,得到 P ( O ∣ λ ) P(O\mid\lambda) P(Oλ)。具体地,在时刻 t = 1 t = 1 t=1,计算 α 1 ( i ) α_1(i) α1(i) N N N 个值 ( i = 1 , 2 , … , N ) (i=1,2,\dots, N) (i=1,2,,N);在各个时刻 t = 1 , 2 , … , T − 1 t=1,2,\dots,T-1 t=1,2,,T1,计算 α t + 1 ( i ) \alpha_{t+1}(i) αt+1(i) N N N 个值 ( i = 1 , 2 , … , N ) (i=1,2,\dots, N) (i=1,2,,N),而且每个 α t + 1 ( i ) \alpha_{t+1}(i) αt+1(i) 的计算利用前一时刻 N N N α t ( j ) \alpha_t(j) αt(j)。减少计算量的原因在于每一次计算直接引用前一个时刻的计算结果,避免重复计算。这样,利用前向概率计算 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ) 的时间复杂度为 O ( T N 2 ) O(TN^2) O(TN2),显然比直接计算的时间复杂度 O ( T N T ) O(TN^T) O(TNT) 要小。

【自然语言处理】隐马尔科夫模型【Ⅲ】估计问题-LMLPHP

图 2    前向算法动态计算过程(详)

我们也可以通过类似图 1 1 1 所展示的模型结构,来抽象地理解前向概率的定义以及前向算法的动态计算过程,如图 3 3 3 所示。

【自然语言处理】隐马尔科夫模型【Ⅲ】估计问题-LMLPHP

图 3    前向算法动态计算过程(简)

通过例子来理解前向算法的计算过程。考虑盒子与球模型 λ = ( A , B , π ) \lambda = (A,B,\pi) λ=(A,B,π),状态集合 Q = { 1 , 2 , 3 } Q=\{1,2,3\} Q={1,2,3},观测集合 V = { V = \{ V={ , , , } \} }
A = [ 0.5 0.2 0.3 0.3 0.5 0.2 0.2 0.3 0.5 ] ,      B = [ 0.5 0.5 0.4 0.6 0.7 0.3 ] ,      π = [ 0.2 0.4 0.4 ] A = \left[\begin{matrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ \end{matrix}\right],\space\space\space\space B = \left[\begin{matrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \\ \end{matrix}\right],\space\space\space\space \pi = \left[\begin{matrix} 0.2 \\ 0.4 \\ 0.4 \\ \end{matrix}\right] A=0.50.30.20.20.50.30.30.20.5,    B=0.50.40.70.50.60.3,    π=0.20.40.4
T = 3 T=3 T=3 O = ( O = ( O=( , , , , , , ) ) ),用前向算法计算 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ) 如下。

计算初值
α 1 ( 1 ) = π 1 b 1 ( o 1 ) = 0.2 × 0.5 = 0.10 α 1 ( 2 ) = π 2 b 2 ( o 1 ) = 0.4 × 0.4 = 0.16 α 1 ( 3 ) = π 3 b 3 ( o 1 ) = 0.4 × 0.7 = 0.28 \alpha_1(1) = \pi_1b_1(o_1) = 0.2 \times 0.5 = 0.10 \\ \alpha_1(2) = \pi_2b_2(o_1) = 0.4 \times 0.4 = 0.16 \\ \alpha_1(3) = \pi_3b_3(o_1) = 0.4 \times 0.7 = 0.28 \\ α1(1)=π1b1(o1)=0.2×0.5=0.10α1(2)=π2b2(o1)=0.4×0.4=0.16α1(3)=π3b3(o1)=0.4×0.7=0.28
递推计算
α 2 ( 1 ) = [ ∑ i = 1 3 α 1 ( i ) a i 1 ] b 1 ( o 2 ) = 0.154 × 0.5 = 0.0770 α 2 ( 2 ) = [ ∑ i = 1 3 α 1 ( i ) a i 2 ] b 2 ( o 2 ) = 0.184 × 0.6 = 0.1104 α 2 ( 3 ) = [ ∑ i = 1 3 α 1 ( i ) a i 3 ] b 3 ( o 2 ) = 0.202 × 0.3 = 0.0606 \alpha_2(1) = \left[ \sum_{i=1}^3\alpha_1(i)a_{i1} \right]b_1(o_2) = 0.154\times 0.5 = 0.0770 \\ \alpha_2(2) = \left[ \sum_{i=1}^3\alpha_1(i)a_{i2} \right]b_2(o_2) = 0.184\times 0.6 = 0.1104 \\ \alpha_2(3) = \left[ \sum_{i=1}^3\alpha_1(i)a_{i3} \right]b_3(o_2) = 0.202\times 0.3 = 0.0606 \\ α2(1)=[i=13α1(i)ai1]b1(o2)=0.154×0.5=0.0770α2(2)=[i=13α1(i)ai2]b2(o2)=0.184×0.6=0.1104α2(3)=[i=13α1(i)ai3]b3(o2)=0.202×0.3=0.0606

α 3 ( 1 ) = [ ∑ i = 1 3 α 2 ( i ) a i 1 ] b 1 ( o 3 ) = 0.04187 α 3 ( 2 ) = [ ∑ i = 1 3 α 2 ( i ) a i 2 ] b 2 ( o 3 ) = 0.03551 α 3 ( 3 ) = [ ∑ i = 1 3 α 2 ( i ) a i 3 ] b 3 ( o 3 ) = 0.05284 \alpha_3(1) = \left[ \sum_{i=1}^3\alpha_2(i)a_{i1} \right]b_1(o_3) = 0.04187\\ \alpha_3(2) = \left[ \sum_{i=1}^3\alpha_2(i)a_{i2} \right]b_2(o_3) = 0.03551\\ \alpha_3(3) = \left[ \sum_{i=1}^3\alpha_2(i)a_{i3} \right]b_3(o_3) = 0.05284\\ α3(1)=[i=13α2(i)ai1]b1(o3)=0.04187α3(2)=[i=13α2(i)ai2]b2(o3)=0.03551α3(3)=[i=13α2(i)ai3]b3(o3)=0.05284

最终计算出 P ( O ∣ λ ) P(O\mid\lambda) P(Oλ)
P ( O ∣ λ ) = ∑ i = 1 3 α 3 ( i ) = 0.13022 P(O\mid \lambda) = \sum_{i=1}^3 \alpha_3(i) = 0.13022 P(Oλ)=i=13α3(i)=0.13022

2.3.3. 后向算法

后向算法也是基于动态规划的思想降低时间复杂度,与前向算法不同之处在于后向算法是从时刻 T T T 向时刻 1 1 1 递推计算的。

定义后向概率。 给定隐马尔可夫模型 λ \lambda λ,定义在时刻 t t t 状态为 q i q_i qi 的条件下,从 t + 1 t+1 t+1 T T T 的部分观测序列为 o t + 1 , o t + 2 , … , o T o_{t+1},o_{t+2},\dots,o_{T} ot+1,ot+2,,oT 的概率为后向概率,记作
β t ( i ) = P ( o t + 1 , o t + 2 , … , o T ∣ s t = q i , λ ) (9) \beta_t(i) = P(o_{t+1},o_{t+2},\dots, o_T\mid s_t = q_i,\lambda)\tag{9} βt(i)=P(ot+1,ot+2,,oTst=qi,λ)(9)
后向算法的初始化为
β T ( i ) = 1 ,      1 ≤ i ≤ N \beta_T(i) = 1,\space\space\space\space 1\le i \le N \\ βT(i)=1,    1iN
利用观测独立性假设可得 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ)
P ( O ∣ λ ) = ∑ i = 1 N P ( O , s 1 = q i ∣ λ ) = ∑ i = 1 N P ( O ∣ s 1 = q i , λ ) P ( s 1 = q i ∣ λ ) = ∑ i = 1 N P ( o 1 ∣ o 2 , o 3 , … , o T , s 1 = q i , λ ) P ( o 2 , o 3 , … , o T ∣ s 1 = q i ) P ( s 1 = q i ∣ λ ) = ∑ i = 1 N P ( o 1 ∣ s 1 = q i , λ ) P ( o 2 , o 3 , … , o T ∣ s 1 = q i ) P ( s 1 = q i ∣ λ ) = ∑ i = 1 N b i ( o 1 ) β 1 ( i ) π i (10) \begin{aligned} P(O\mid \lambda) &= \sum_{i=1}^N P(O,s_1 = q_i\mid \lambda)\\ &= \sum_{i=1}^N P(O\mid s_1 = q_i, \lambda) P(s_1 = q_i\mid \lambda) \\ &= \sum_{i=1}^N P(o_1\mid o_2,o_3,\dots, o_T, s_1 = q_i, \lambda) P(o_2,o_3,\dots, o_T\mid s_1 = q_i) P(s_1 = q_i\mid \lambda) \\ &= \sum_{i=1}^N P(o_1\mid s_1 = q_i, \lambda) P(o_2,o_3,\dots, o_T\mid s_1 = q_i) P(s_1 = q_i\mid \lambda) \\ &= \sum_{i=1}^N b_i(o_1) \beta_1(i) \pi_i \tag{10} \end{aligned} P(Oλ)=i=1NP(O,s1=qiλ)=i=1NP(Os1=qi,λ)P(s1=qiλ)=i=1NP(o1o2,o3,,oT,s1=qi,λ)P(o2,o3,,oTs1=qi)P(s1=qiλ)=i=1NP(o1s1=qi,λ)P(o2,o3,,oTs1=qi)P(s1=qiλ)=i=1Nbi(o1)β1(i)πi(10)

推导递推公式,
β t ( i ) = P ( o t + , o t + 2 , … , o T ∣ s t = q i , λ ) = ∑ j = 1 N P ( o t + 1 , o t + 2 , … , o T , s t + 1 = q j ∣ s t = q i , λ ) = ∑ j = 1 N P ( o t + 1 , o t + 2 , … , o T ∣ s t + 1 = q j , s t = q i , λ ) P ( s t + 1 = q j ∣ s t = q i , λ ) \begin{aligned} \beta_{t}(i) &= P(o_{t+},o_{t+2},\dots,o_T\mid s_{t}=q_i,\lambda)\\ &= \sum_{j=1}^N P(o_{t+1},o_{t+2},\dots,o_T,s_{t+1}=q_j\mid s_{t}=q_i,\lambda) \\ &= \sum_{j=1}^N P(o_{t+1},o_{t+2},\dots,o_T\mid s_{t+1}=q_j,s_{t}=q_i,\lambda)P(s_{t+1}=q_j\mid s_t=q_i,\lambda) \\ \end{aligned} βt(i)=P(ot+,ot+2,,oTst=qi,λ)=j=1NP(ot+1,ot+2,,oT,st+1=qjst=qi,λ)=j=1NP(ot+1,ot+2,,oTst+1=qj,st=qi,λ)P(st+1=qjst=qi,λ)
其中,根据 D-separation 可以将 { s t } \{s_t\} {st} 视为集合 A A A { s t + 1 } \{s_{t+1}\} {st+1} 视为集合 B B B { o t + 1 , o t + 2 , … , o T } \{o_{t+1},o_{t+2},\dots, o_T\} {ot+1,ot+2,,oT} 视为集合 C C C。显然三者构成依赖关系中的顺序结构,存在性质 P ( C ∣ B ) = P ( C ∣ A , B ) P(C\mid B) = P(C\mid A,B) P(CB)=P(CA,B),即 A ⊥ C ∣ B A⊥C\mid B ACB。因此,根据条件独立性和观测独立性假设可以对上式进一步变形
β t ( i ) = ∑ j = 1 N P ( o t + 1 , o t + 2 , … , o T ∣ s t + 1 = q j , λ ) ⋅ a i j = ∑ j = 1 N P ( o t + 1 ∣ o t + 2 , o t + 3 , … , o T , s t + 1 = q j , λ ) P ( o t + 2 , o t + 3 , … , o T ∣ s t + 1 = q j , λ ) ⋅ a i j = ∑ j = 1 N P ( o t + 1 ∣ s t + 1 = q j , λ ) P ( o t + 2 , o t + 3 , … , o T ∣ s t + 1 = q j , λ ) ⋅ a i j = ∑ j = 1 N b j ( o t + 1 ) β t + 1 ( j ) a i j (11) \begin{aligned} \beta_t(i) &= \sum_{j=1}^N P(o_{t+1},o_{t+2},\dots,o_T\mid s_{t+1}=q_j,\lambda)·a_{ij} \\ &=\sum_{j=1}^N P(o_{t+1}\mid o_{t+2},o_{t+3},\dots, o_T, s_{t+1}=q_j, \lambda) P(o_{t+2},o_{t+3}, \dots, o_T\mid s_{t+1}=q_j,\lambda) ·a_{ij} \\ &= \sum_{j=1}^N P(o_{t+1}\mid s_{t+1}=q_j, \lambda) P(o_{t+2},o_{t+3}, \dots, o_T\mid s_{t+1}=q_j,\lambda) ·a_{ij} \\ &= \sum_{j=1}^N b_j(o_{t+1})\beta_{t+1}(j)a_{ij} \tag{11} \end{aligned} βt(i)=j=1NP(ot+1,ot+2,,oTst+1=qj,λ)aij=j=1NP(ot+1ot+2,ot+3,,oT,st+1=qj,λ)P(ot+2,ot+3,,oTst+1=qj,λ)aij=j=1NP(ot+1st+1=qj,λ)P(ot+2,ot+3,,oTst+1=qj,λ)aij=j=1Nbj(ot+1)βt+1(j)aij(11)
后向概率计算的动态过程如图 4 4 4 5 5 5 所示。

【自然语言处理】隐马尔科夫模型【Ⅲ】估计问题-LMLPHP

图 4    后向算法动态计算过程(详)

【自然语言处理】隐马尔科夫模型【Ⅲ】估计问题-LMLPHP

图 5    后向算法动态计算过程(简)

2.3.4. 前向、后向概率的相关计算

利用前向概率和后向概率可以得到一些下面会用到的概率。

  1. P ( O ∣ λ ) P(O\mid \lambda) P(Oλ) 的多种表达形式。

    ( 6 ) (6) (6) 和式 ( 10 ) (10) (10) 展示了 P ( O ∣ λ ) P(O\mid \lambda) P(Oλ) 为分别由前向概率和后向概率表示的形式,但是更为常用的其实是二者共同表示的形式。由前向概率和后向概率的定义可得
    KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ P(O\mid \lambd…
    特别地,当 t = T t=T t=T 时式 ( 12 ) (12) (12) 变形为式 ( 6 ) (6) (6);当 t = T t=T t=T 时式 ( 12 ) (12) (12) 变形为式 ( 10 ) (10) (10)。另外,如果将式 ( 11 ) (11) (11) 代入到式 ( 12 ) (12) (12) 中得
    P ( O ∣ λ ) = ∑ i = 1 N ∑ j = 1 N α t ( i ) a i j b j ( o t + 1 ) β t + 1 ( j ) (13) P(O\mid \lambda ) = \sum_{i=1}^N\sum_{j=1}^N \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j) \tag{13} P(Oλ)=i=1Nj=1Nαt(i)aijbj(ot+1)βt+1(j)(13)
    由于 P ( O ∣ λ ) = ∑ i = 1 N ∑ j = 1 N P ( O , s t = q i , s t + 1 = q j ∣ λ ) P(O\mid \lambda) = \sum\limits_{i=1}^N\sum\limits_{j=1}^N P(O,s_t = q_i,s_{t+1}=q_j\mid \lambda) P(Oλ)=i=1Nj=1NP(O,st=qi,st+1=qjλ),与式 ( 13 ) (13) (13) 相对应可得
    P ( O , s t = q i , s t + 1 = q j ∣ λ ) = α t ( i ) a i j b j ( o t + 1 ) β t + 1 ( j ) (14) P(O,s_t = q_i,s_{t+1}=q_j\mid \lambda) =\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)\tag{14} P(O,st=qi,st+1=qjλ)=αt(i)aijbj(ot+1)βt+1(j)(14)

  2. 给定模型 λ \lambda λ 和观测 O O O,在时刻 t t t 处于状态 q i q_i qi 的概率。

    该概率记为
    γ t ( i ) = P ( s t = q i ∣ O , λ ) (15) \gamma_t(i) = P(s_t = q_i \mid O,\lambda) \tag{15} γt(i)=P(st=qiO,λ)(15)
    根据式 ( 12 ) (12) (12) 我们知道 P ( O , s t = q i ∣ λ ) = α t ( i ) β t ( i ) P(O,s_t=q_i\mid \lambda)=\alpha_t(i)\beta_t(i) P(O,st=qiλ)=αt(i)βt(i) P ( O ∣ λ ) = ∑ i = 1 N α t ( i ) β t ( i ) P(O\mid \lambda) = \sum\limits_{i=1}^N \alpha_t(i)\beta_t(i) P(Oλ)=i=1Nαt(i)βt(i),可得
    γ t ( i ) = P ( s t = q i ∣ O , λ ) = P ( O , s t = q i ∣ λ ) P ( O ∣ λ ) = α t ( i ) β t ( i ) ∑ i = 1 N α t ( i ) β t ( i ) (16) \begin{aligned} \gamma_t(i) &= P(s_t = q_i\mid O,\lambda) \\ &=\frac{P(O,s_t=q_i\mid \lambda)}{P(O\mid \lambda)} \\ &= \frac{\alpha_t(i)\beta_t(i)}{\sum\limits_{i=1}^N \alpha_t(i)\beta_t(i)} \tag{16} \end{aligned} γt(i)=P(st=qiO,λ)=P(Oλ)P(O,st=qiλ)=i=1Nαt(i)βt(i)αt(i)βt(i)(16)

  3. 给定模型 λ \lambda λ 和观测 O O O,在时刻 t t t 处于状态 q i q_i qi 且在时刻 t + 1 t+1 t+1 处于状态 q j q_j qj 的概率。

    该概率记为
    ξ t ( i , j ) = P ( s t = q i , s t + 1 = q j ∣ O , λ ) (17) \xi_t(i,j) = P(s_t=q_i,s_{t+1} =q_j\mid O,\lambda) \tag{17} ξt(i,j)=P(st=qi,st+1=qjO,λ)(17)
    利用式 ( 13 ) (13) (13) 和式 ( 14 ) (14) (14) 对式 ( 17 ) (17) (17) 变形得
    ξ t ( i , j ) = P ( O , s t = q i , s t + 1 = q j ∣ λ ) P ( O ∣ λ ) = P ( O , s t = q i , s t + 1 = q j ∣ λ ) ∑ i = 1 N ∑ j = 1 N P ( O , s t = q i , s t + 1 = q j ∣ λ ) = α t ( i ) a i j b j ( o t + 1 ) β t + 1 ( j ) ∑ i = 1 N ∑ j = 1 N α t ( i ) a i j b j ( o t + 1 ) β t + 1 ( j ) (18) \begin{aligned} \xi_t(i,j) &= \frac{P(O,s_t=q_i,s_{t+1} =q_j\mid\lambda)}{P(O\mid \lambda)} \\ &= \frac{P(O,s_t=q_i,s_{t+1} =q_j\mid\lambda)}{\sum\limits_{i=1}^N\sum\limits_{j=1}^N P(O,s_t=q_i,s_{t+1} =q_j\mid\lambda)} \\ &= \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum\limits_{i=1}^N\sum\limits_{j=1}^N \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}\tag{18} \end{aligned} ξt(i,j)=P(Oλ)P(O,st=qi,st+1=qjλ)=i=1Nj=1NP(O,st=qi,st+1=qjλ)P(O,st=qi,st+1=qjλ)=i=1Nj=1Nαt(i)aijbj(ot+1)βt+1(j)αt(i)aijbj(ot+1)βt+1(j)(18)
    观察式 ( 15 ) (15) (15) 和式 ( 17 ) (17) (17),很容易得出 γ t ( i ) \gamma_t(i) γt(i) ξ t ( i , j ) \xi_t(i,j) ξt(i,j) 的关系
    γ t ( i ) = ∑ j = 1 N ξ t ( i , j ) \gamma_t(i) = \sum_{j=1}^N \xi_t(i,j) γt(i)=j=1Nξt(i,j)

12-14 06:53