泊松积分

最常用的两个:

∫ − ∞ ∞ e − t 2 d t = π \int_{-\infty}^{\infty}e^{-t^2}dt=\sqrt{\pi} et2dt=π

∫ 0 ∞ e − t 2 d t = π 2 \int_{0}^{\infty}e^{-t^2}dt=\frac{\sqrt{\pi}}{2} 0et2dt=2π

伽马函数

基本结论

Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(1)=1,\Gamma(\frac{1}{2})=\sqrt{\pi} Γ(1)=1Γ(21)=π

性质

Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1)=\alpha\Gamma(\alpha) Γ(α+1)=αΓ(α)

如: Γ ( 3 ) = Γ ( 2 + 1 ) = 2 Γ ( 2 ) = 2 ⋅ 1 ! = 2 \Gamma{(3)}=\Gamma(2+1)=2\Gamma{(2)}=2·1!=2 Γ(3)=Γ(2+1)=(2)=21!=2

Γ ( 3 2 ) = Γ ( 1 2 + 1 ) = 1 2 Γ ( 1 2 ) = π 2 \Gamma(\frac{3}{2})=\Gamma(\frac{1}{2}+1)=\frac{1}{2}\Gamma(\frac{1}{2})=\frac{\sqrt{\pi}}{2} Γ(23)=Γ(21+1)=21Γ(21)=2π

两种形式

  1. Γ ( n + 1 ) = ∫ 0 ∞ x n e − x d x = n ! \Gamma(n+1)=\int_{0}^{\infty}x^{n}e^{-x}dx=n! Γ(n+1)=0xnexdx=n!

Γ ( α ) = ∫ 0 ∞ x α − 1 e − x d x = ( α − 1 ) ! \Gamma(\alpha)=\int_{0}^{\infty}x^{\alpha-1}e^{-x}dx=(\alpha-1)! Γ(α)=0xα1exdx=(α1)!

如: Γ ( 3 ) = Γ ( 2 + 1 ) = 2 ! = 2 \Gamma{(3)}=\Gamma(2+1)=2!=2 Γ(3)=Γ(2+1)=2!=2

  1. x = t 2 x=t^2 x=t2有第二种形式:

Γ ( α ) = 2 ∫ 0 ∞ t 2 α − 1 e − t 2 d t \Gamma(\alpha)=2\int_{0}^{\infty}t^{2\alpha-1}e^{-t^2}dt Γ(α)=20t2α1et2dt

如: 2 ∫ 0 ∞ t 4 e − t 2 d t = 2 ∫ 0 ∞ t 2 ⋅ 5 2 − 1 e − t 2 d t = Γ ( 5 2 ) = Γ ( 3 2 + 1 ) = 3 2 ⋅ 1 2 ⋅ Γ ( 1 2 ) = 3 π 4 2\int_{0}^{\infty}t^{4}e^{-t^2}dt=2\int_{0}^{\infty}t^{2·\frac{5}{2}-1}e^{-t^2}dt=\Gamma{(\frac{5}{2})}=\Gamma(\frac{3}{2}+1)=\frac{3}{2}·\frac{1}{2}·\Gamma{(\frac{1}{2})}=\frac{3\sqrt{\pi}}{4} 20t4et2dt=20t2251et2dt=Γ(25)=Γ(23+1)=2321Γ(21)=43π

常用公式表

泊松积分、伽马函数——公式干货总结-LMLPHP

11-08 06:59