一、重载 双等号 / 不等号 运算符




1、等于判断 == 运算符重载


使用 成员函数 实现 等于判断 == 运算符重载 :

  • 首先 , 写出函数名 , 函数名规则为 " operate " 后面跟上要重载的运算符 ,
    • 要对 String a , b 对象对比操作 , 使用 == 运算符 , 使用时用法为 a == b ;
    • 函数名是 operate== ;
operate==
  • 然后 , 根据操作数 写出函数参数 , 参数一般都是 对象的引用 ;
    • 要对 String a , b 对象对比操作 , 使用 == 运算符 , 使用时用法为 a == b ;
    • 左操作数 : 其中 左操作数 是 String a , 这里通过 this 指针调用 , 不需要声明在参数中 ;
    • 右操作数 : 右操作数 是 String b ; 该操作数需要声明在参数中 , 注意需要声明 引用类型 ;
    • 上述两个是对象类型 , 对象一般传入 指针 或 引用 , 这里传入引用类型 ;
operator==(String & s)
  • 再后 , 根据业务完善返回值 , 返回值可以是 引用 / 指针 / 元素 ;
    • 此处返回值是 bool 类型 , 返回 true 或者 false 布尔值即可 ;
bool operator==(String& s)
  • 最后 , 实现函数体 , 编写具体的运算符操作业务逻辑 ;
    • 先对比数组的长度是否相等 ;
    • 然后对比数组中每个元素是否相等 ;
// 重载 双等号 == 运算符
bool String::operator==(String& s)
{
	// 首先判断数组长度是否相等
	if (this->m_len != s.m_len)
	{
		return false;
	}

	for (size_t i = 0; i < this->m_len; i++)
	{
		// 只要有一个元素不相等, 整个数组就不相等
		if (this->m_p[i] != s.m_p[i])
		{
			return false;
		}
	}
	return true;
}

2、重载 不等号 != 运算符


使用 成员函数 实现 重载 不等号 != 运算符 :

  • 首先 , 写出函数名 , 函数名规则为 " operate " 后面跟上要重载的运算符 ,
    • 要对 String a , b 对象对比操作 , 使用 != 运算符 , 使用时用法为 a != b ;
    • 函数名是 operate!= ;
operate!=
  • 然后 , 根据操作数 写出函数参数 , 参数一般都是 对象的引用 ;
    • 要对 String a , b 对象对比操作 , 使用 != 运算符 , 使用时用法为 a != b ;
    • 左操作数 : 其中 左操作数 是 String a , 这里通过 this 指针调用 , 不需要声明在参数中 ;
    • 右操作数 : 右操作数 是 String b ; 该操作数需要声明在参数中 , 注意需要声明 引用类型 ;
    • 上述两个是对象类型 , 对象一般传入 指针 或 引用 , 这里传入引用类型 ;
operator!=(String& a)
  • 再后 , 根据业务完善返回值 , 返回值可以是 引用 / 指针 / 元素 ;
    • 此处返回值是 bool 类型 , 返回 true 或者 false 布尔值即可 ;
bool operator!=(String& s)
  • 最后 , 实现函数体 , 编写具体的运算符操作业务逻辑 ;
    • 先对比数组的长度是否不相等 ;
    • 然后对比数组中每个元素是否不相等 ;
// 重载 不等号 != 运算符
bool String::operator!=(String& s)
{
	// 首先判断数组长度是否相等
	if (this->m_len != s.m_len)
	{
		return false;
	}

	for (size_t i = 0; i < this->m_len; i++)
	{
		// 只要有一个元素不相等, 整个数组就不相等
		if (this->m_p[i] != s.m_p[i])
		{
			return false;
		}
	}
	return true;
}




三、完整代码示例




1、String.h 类头文件


#pragma once

#include "iostream"
using namespace std;

class String
{
public:
	// 默认的无参构造函数
	String();

	// 有参构造函数 , 接收一个 char* 类型字符串指针
	String(const char* p);

	// 有参构造函数 , 接收 int 类型值 , 表示字符串大小
	String(int len);

	// 拷贝构造函数 , 使用 String 对象初始化 对象值
	String(const String& s);

	// 析构函数
	~String();

public:
	// 重载等号 = 操作符 , 右操作数是 String 对象的情况
	String& operator=(const String& s);

	// 重载等号 = 操作符 , 右操作数是 字符串常量值 的情况
	String& operator=(const char* p);

	// 重载 数组下标 [] 操作符
	char& operator[](int i);

	// 重载 双等号 == 运算符
	bool operator==(String& s);

	// 重载 不等号 != 运算符
	bool operator!=(String& s);

	// 使用 全局函数 实现 左移运算符 << 重载
	// 将全局函数 声明为 String 的友元函数
	friend ostream& operator<<(ostream& out, String& s);

public:
	// 获取私有成员 char* m_p
	char* str();

	// 获取私有成员 int m_len
	int len();

private:
	// 字符串长度 , 不包括 '\0'
	// 内存占用空间大小 = 字符串长度 + 1
	int m_len;

	// 字符串指针, 指向堆内存中的字符串
	char* m_p;
};

2、String.cpp 类实现


// 使用 strcpy 函数报错
// error C4996: 'strcpy': This function or variable may be unsafe. 
// Consider using strcpy_s instead. 
// To disable deprecation, use _CRT_SECURE_NO_WARNINGS. 
// See online help for details.
#define _CRT_SECURE_NO_WARNINGS

#include "String.h"

// 默认的无参构造函数
String::String()
{
	// 默认构造一个空字符串 , 字符串长度为 0 
	// 但是 , 字符串指针 指向的内存空间大小是 1 , 内容是 '\0'
	m_len = 0;

	// 使用 new 关键字为 char* m_p; 指针分配内存
	// 对于基础数据类型 new 等同于 malloc
	m_p = new char[m_len + 1];

	// 拷贝空字符串到 m_p 指向的内存中
	strcpy(m_p, "");

	cout << "调用无参构造函数" << endl;
}

// 有参构造函数 , 接收一个 char* 类型字符串指针
String::String(const char* p)
{
	if (p == NULL)
	{
		// 默认构造一个空字符串 , 字符串长度为 0 
		// 但是 , 字符串指针 指向的内存空间大小是 1 , 内容是 '\0'
		this->m_len = 0;

		// 使用 new 关键字为 char* m_p; 指针分配内存
		// 对于基础数据类型 new 等同于 malloc
		this->m_p = new char[this->m_len + 1];

		// 拷贝空字符串到 m_p 指向的内存中
		strcpy(this->m_p, "");
	}
	else
	{
		// 获取传入字符串的长度
		// 但是 , 字符串指针 指向的内存空间大小需要 +1 , 内容是 '\0'
		this->m_len = strlen(p);

		// 使用 new 关键字为 char* m_p; 指针分配内存
		// 对于基础数据类型 new 等同于 malloc
		this->m_p = new char[this->m_len + 1];

		// 拷贝字符串到 m_p 指向的内存中
		strcpy(this->m_p, p);
	}
	cout << "调用有参构造函数" << endl;
}

// 有参构造函数 , 接收 int 类型值 , 表示字符串大小
String::String(int len)
{
	if (len == 0)
	{
		// 默认构造一个空字符串 , 字符串长度为 0 
		// 但是 , 字符串指针 指向的内存空间大小是 1 , 内容是 '\0'
		this->m_len = 0;

		// 使用 new 关键字为 char* m_p; 指针分配内存
		// 对于基础数据类型 new 等同于 malloc
		this->m_p = new char[this->m_len + 1];

		// 拷贝空字符串到 m_p 指向的内存中
		strcpy(this->m_p, "");
	}
	else
	{
		// 获取传入字符串的长度
		// 但是 , 字符串指针 指向的内存空间大小需要 +1 , 内容是 '\0'
		this->m_len = len;

		// 使用 new 关键字为 char* m_p; 指针分配内存
		// 对于基础数据类型 new 等同于 malloc
		this->m_p = new char[this->m_len + 1];

		// 将内存空间设置为 0 内容
		memset(this->m_p, 0, this->m_len);
	}
};

// 拷贝构造函数 , 使用 String 对象初始化 对象值
String::String(const String& s)
{
	// 拷贝字符串长度
	// 注意 : 字符串指针 指向的内存空间大小需要 +1 , 内容是 '\0'
	this->m_len = s.m_len;

	// 使用 new 关键字为 char* m_p; 指针分配内存
	// 对于基础数据类型 new 等同于 malloc
	this->m_p = new char[this->m_len + 1];

	// 拷贝字符串到 m_p 指向的内存中
	strcpy(this->m_p, s.m_p);

	cout << "调用拷贝构造函数" << endl;
}

// 析构函数
String::~String()
{
	if (this->m_p != NULL)
	{
		// 之前使用 new 分配的内存
		// 释放内存就需要使用 delete 
		// 使用 malloc 分配的内存需要使用 free 释放
		delete[] this->m_p;

		// 设置指针指为空 , 避免出现野指针
		this->m_p = NULL;

		// 设置字符串长度为 0
		this->m_len = 0;
	}
}

// 重载等号 = 操作符 , 右操作数是 String 对象的情况
String& String::operator=(const String& s)
{
	// 先处理本对象已分配的内存
	if (this->m_p != NULL)
	{
		// 之前使用 new 分配的内存
		// 释放内存就需要使用 delete 
		// 使用 malloc 分配的内存需要使用 free 释放
		delete[] this->m_p;

		// 设置指针指为空 , 避免出现野指针
		this->m_p = NULL;

		// 设置字符串长度为 0
		this->m_len = 0;
	}

	// 拷贝字符串长度
	// 注意 : 字符串指针 指向的内存空间大小需要 +1 , 内容是 '\0'
	this->m_len = s.m_len;

	// 使用 new 关键字为 char* m_p; 指针分配内存
	// 对于基础数据类型 new 等同于 malloc
	this->m_p = new char[this->m_len + 1];

	// 拷贝字符串到 m_p 指向的内存中
	strcpy(this->m_p, s.m_p);

	cout << "调用重载 等号 = 操作符函数 String& String::operator=(const String& s)" << endl;

	return *this;
}

// 重载等号 = 操作符 , 右操作数是 字符串常量值 的情况
String& String::operator=(const char* p)
{
	// 先处理本对象已分配的内存
	if (this->m_p != NULL)
	{
		// 之前使用 new 分配的内存
		// 释放内存就需要使用 delete 
		// 使用 malloc 分配的内存需要使用 free 释放
		delete[] this->m_p;

		// 设置指针指为空 , 避免出现野指针
		this->m_p = NULL;

		// 设置字符串长度为 0
		this->m_len = 0;
	}

	// 拷贝字符串长度
	// 注意 : 字符串指针 指向的内存空间大小需要 +1 , 内容是 '\0'
	this->m_len = strlen(p);

	// 使用 new 关键字为 char* m_p; 指针分配内存
	// 对于基础数据类型 new 等同于 malloc
	this->m_p = new char[this->m_len + 1];

	// 拷贝字符串到 m_p 指向的内存中
	strcpy(this->m_p, p);

	cout << "调用重载 等号 = 操作符函数 String& String::operator=(const char* p)" << endl;

	return *this;
}

// 重载 数组下标 [] 操作符
char& String::operator[](int i)
{
	cout << "调用重载 下标 [] 操作符函数 char& String::operator[](int i)" << endl;

	// 直接返回对应 i 索引字符
	return this->m_p[i];
}

// 重载 双等号 == 运算符
bool String::operator==(String& s)
{
	// 首先判断数组长度是否相等
	if (this->m_len != s.m_len)
	{
		return false;
	}

	for (size_t i = 0; i < this->m_len; i++)
	{
		// 只要有一个元素不相等, 整个数组就不相等
		if (this->m_p[i] != s.m_p[i])
		{
			return false;
		}
	}
	return true;
}

// 重载 不等号 != 运算符
bool String::operator!=(String& s)
{
	// 首先判断数组长度是否相等
	if (this->m_len != s.m_len)
	{
		return false;
	}

	for (size_t i = 0; i < this->m_len; i++)
	{
		// 只要有一个元素不相等, 整个数组就不相等
		if (this->m_p[i] != s.m_p[i])
		{
			return false;
		}
	}
	return true;
}

// 获取私有成员 char* m_p
char* String::str()
{
	return this->m_p;
}

// 获取私有成员 int m_len
int String::len()
{
	return this->m_len;
}

// 全局函数 中实现 String 左移运算符重载
// 返回 ostream& 引用类型 , 是为了支持链式调用 cout << s1 << endl;
ostream& operator<<(ostream& out, String& s)
{
	cout << "调用重载 左移 << 操作符函数 ostream& operator<<(ostream& out, String& s)" << endl;

	// 在函数体中将 String 对象的 m_p 指针指向的数据输出到 out 输出流中
	out << s.m_p  << endl;

	// 该返回值还需要当左值使用
	return out;
}

3、Test.cpp 测试类


#include "iostream"
using namespace std;

// 导入自定义的 String 类
#include "String.h"

int main() {

	// 调用无参构造函数
	String s1;

	// 调用有参构造函数
	String s2("Tom");

	// 调用拷贝构造函数
	String s3 = s2;

	// 调用重载的等号运算符函数, 右操作数是 String 对象
	s1 = s2;

	// 调用重载的等号运算符函数, 右操作数是 字符串常量值 , char* 指针类型
	s3 = "Jerry";

	// 调用重载的下标运算符函数
	char c = s3[3];

	// 调用 重载的 左移运算符 函数
	cout << s3 << endl;

	// 控制台暂停 , 按任意键继续向后执行
	system("pause");

	return 0;
}
10-12 08:05