37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞不掂的问题,希望能够抛砖引玉。

【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验八十六:WS2812B-4*4位 RGB LED 全彩驱动16位彩灯开发板模块

【雕爷学编程】Arduino动手做(86)---4*4位 WS2812 全彩模块4-LMLPHP

知识点:WS2812B
是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,还包含有高精度的内部振荡器和12V高压可编程定电流控制部分,有效保证了像素点光的颜色高度一致。数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN端接受从控制器传输过来的数据,首先送过来的24bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少24bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。
【雕爷学编程】Arduino动手做(86)---4*4位 WS2812 全彩模块4-LMLPHP
主要特点

● 智能反接保护,电源反接不会损坏IC。

● IC控制电路与LED点光源公用一个电源。

● 控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。

● 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。

● 内置上电复位和掉电复位电路。

● 每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示,扫描频率不低于400Hz/s。

● 串行级联接口,能通过一根信号线完成数据的接收与解码。

● 任意两点传传输距离在不超过5米时无需增加任何电路。

● 当刷新速率30帧/秒时,级联数不小于1024点。

● 数据发送速度可达800Kbps。

● 光的颜色高度一致,性价比高。

【雕爷学编程】Arduino动手做(86)---4*4位 WS2812 全彩模块4-LMLPHP
WS2812B-4*4位 RGB LED 全彩驱动16位彩灯开发板模块

5050高亮LED,内置控制芯片,仅需1个IO口即可控制多个LED

芯片内置整形电路,信号畸变不会累计,稳定显示

三基色256级亮度调剂,16万色真彩显示效果,扫描频率不低于400Hz/S

串行连级接口,能通过一根信号线完成数据的接收与解码

刷新速率30帧/秒时,低速连级模式连级数不小于512点

数据收发速度最高可达800Kbps

高亮LED,光色亮度一致性高

两端有l联级接口,可以直接插接
【雕爷学编程】Arduino动手做(86)---4*4位 WS2812 全彩模块4-LMLPHP

【Arduino】168种传感器模块系列实验(资料+代码+图形+仿真)
实验八十六: WS2812B-4*4位 RGB LED 全彩驱动16位彩灯开发板
项目十七:颜色调色板
实验接线
Module UNO
VCC —— 3.3V
GND —— GND
DI —— D6

实验开源代码

/*
  【Arduino】168种传感器模块系列实验(资料+代码+图形+仿真)
  实验八十九: WS2812B-4*4位 RGB LED 全彩驱动16位彩灯开发板
  项目十七:颜色调色板
  实验接线
  Module    UNO
  VCC —— 3.3V
  GND —— GND
  DI  ——  D6
*/

#include <FastLED.h>

#define LED_PIN     6
#define NUM_LEDS    16
#define BRIGHTNESS  33
#define LED_TYPE    WS2811
#define COLOR_ORDER GRB
CRGB leds[NUM_LEDS];

#define UPDATES_PER_SECOND 100 //定义每秒更新数

// This example shows several ways to set up and use 'palettes' of colors
// with FastLED.
//
// These compact palettes provide an easy way to re-colorize your
// animation on the fly, quickly, easily, and with low overhead.
//
// USING palettes is MUCH simpler in practice than in theory, so first just
// run this sketch, and watch the pretty lights as you then read through
// the code.  Although this sketch has eight (or more) different color schemes,
// the entire sketch compiles down to about 6.5K on AVR.
//
// FastLED provides a few pre-configured color palettes, and makes it
// extremely easy to make up your own color schemes with palettes.
//
// Some notes on the more abstract 'theory and practice' of
// FastLED compact palettes are at the bottom of this file.



CRGBPalette16 currentPalette;
TBlendType    currentBlending;

extern CRGBPalette16 myRedWhiteBluePalette;
extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;


void setup() {
    delay( 3000 ); // power-up safety delay
    FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
    FastLED.setBrightness(  BRIGHTNESS );
    currentPalette = RainbowColors_p;
    currentBlending = LINEARBLEND;
}


void loop()
{
    ChangePalettePeriodically();
    
    static uint8_t startIndex = 0;
    startIndex = startIndex + 1; /* motion speed */
    
    FillLEDsFromPaletteColors( startIndex);
    
    FastLED.show();
    FastLED.delay(1000 / UPDATES_PER_SECOND);
}

void FillLEDsFromPaletteColors( uint8_t colorIndex)
{
    uint8_t brightness = 255;
    
    for( int i = 0; i < NUM_LEDS; ++i) {
        leds[i] = ColorFromPalette( currentPalette, colorIndex, brightness, currentBlending);
        colorIndex += 3;
    }
}


// There are several different palettes of colors demonstrated here.
//
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
//
// Additionally, you can manually define your own color palettes, or you can write
// code that creates color palettes on the fly.  All are shown here.

void ChangePalettePeriodically()
{
    uint8_t secondHand = (millis() / 1000) % 60;
    static uint8_t lastSecond = 99;
    
    if( lastSecond != secondHand) {
        lastSecond = secondHand;
        if( secondHand ==  0)  { currentPalette = RainbowColors_p;         currentBlending = LINEARBLEND; }
        if( secondHand == 10)  { currentPalette = RainbowStripeColors_p;   currentBlending = NOBLEND;  }
        if( secondHand == 15)  { currentPalette = RainbowStripeColors_p;   currentBlending = LINEARBLEND; }
        if( secondHand == 20)  { SetupPurpleAndGreenPalette();             currentBlending = LINEARBLEND; }
        if( secondHand == 25)  { SetupTotallyRandomPalette();              currentBlending = LINEARBLEND; }
        if( secondHand == 30)  { SetupBlackAndWhiteStripedPalette();       currentBlending = NOBLEND; }
        if( secondHand == 35)  { SetupBlackAndWhiteStripedPalette();       currentBlending = LINEARBLEND; }
        if( secondHand == 40)  { currentPalette = CloudColors_p;           currentBlending = LINEARBLEND; }
        if( secondHand == 45)  { currentPalette = PartyColors_p;           currentBlending = LINEARBLEND; }
        if( secondHand == 50)  { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND;  }
        if( secondHand == 55)  { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
    }
}

// This function fills the palette with totally random colors.
void SetupTotallyRandomPalette()
{
    for( int i = 0; i < 16; ++i) {
        currentPalette[i] = CHSV( random8(), 255, random8());
    }
}

// This function sets up a palette of black and white stripes,
// using code.  Since the palette is effectively an array of
// sixteen CRGB colors, the various fill_* functions can be used
// to set them up.
void SetupBlackAndWhiteStripedPalette()
{
    // 'black out' all 16 palette entries...
    fill_solid( currentPalette, 16, CRGB::Black);
    // and set every fourth one to white.
    currentPalette[0] = CRGB::White;
    currentPalette[4] = CRGB::White;
    currentPalette[8] = CRGB::White;
    currentPalette[12] = CRGB::White;
    
}

// This function sets up a palette of purple and green stripes.
void SetupPurpleAndGreenPalette()
{
    CRGB purple = CHSV( HUE_PURPLE, 255, 255);
    CRGB green  = CHSV( HUE_GREEN, 255, 255);
    CRGB black  = CRGB::Black;
    
    currentPalette = CRGBPalette16(
                                   green,  green,  black,  black,
                                   purple, purple, black,  black,
                                   green,  green,  black,  black,
                                   purple, purple, black,  black );
}


// This example shows how to set up a static color palette
// which is stored in PROGMEM (flash), which is almost always more
// plentiful than RAM.  A static PROGMEM palette like this
// takes up 64 bytes of flash.
const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM =
{
    CRGB::Red,
    CRGB::Gray, // 'white' is too bright compared to red and blue
    CRGB::Blue,
    CRGB::Black,
    
    CRGB::Red,
    CRGB::Gray,
    CRGB::Blue,
    CRGB::Black,
    
    CRGB::Red,
    CRGB::Red,
    CRGB::Gray,
    CRGB::Gray,
    CRGB::Blue,
    CRGB::Blue,
    CRGB::Black,
    CRGB::Black
};

// Additional notes on FastLED compact palettes:
//
// Normally, in computer graphics, the palette (or "color lookup table")
// has 256 entries, each containing a specific 24-bit RGB color.  You can then
// index into the color palette using a simple 8-bit (one byte) value.
// A 256-entry color palette takes up 768 bytes of RAM, which on Arduino
// is quite possibly "too many" bytes.
//
// FastLED does offer traditional 256-element palettes, for setups that
// can afford the 768-byte cost in RAM.
//
// However, FastLED also offers a compact alternative.  FastLED offers
// palettes that store 16 distinct entries, but can be accessed AS IF
// they actually have 256 entries; this is accomplished by interpolating
// between the 16 explicit entries to create fifteen intermediate palette
// entries between each pair.
//
// So for example, if you set the first two explicit entries of a compact 
// palette to Green (0,255,0) and Blue (0,0,255), and then retrieved 
// the first sixteen entries from the virtual palette (of 256), you'd get
// Green, followed by a smooth gradient from green-to-blue, and then Blue.

【Arduino】168种传感器模块系列实验(资料+代码+图形+仿真)
实验八十六: WS2812B-4*4位 RGB LED 全彩驱动16位彩灯开发板
项目十八:快速淡入淡出循环变色
实验接线
Module UNO
VCC —— 3.3V
GND —— GND
DI —— D6

实验场景图

/*
  【Arduino】168种传感器模块系列实验(资料+代码+图形+仿真)
  实验八十九: WS2812B-4*4位 RGB LED 全彩驱动16位彩灯开发板
  项目十八:快速淡入淡出循环变色
  实验接线
  Module    UNO
  VCC —— 3.3V
  GND —— GND
  DI  ——  D6
*/

#include <FastLED.h>

// How many leds in your strip?
#define NUM_LEDS 16 

// For led chips like Neopixels, which have a data line, ground, and power, you just
// need to define DATA_PIN.  For led chipsets that are SPI based (four wires - data, clock,
// ground, and power), like the LPD8806, define both DATA_PIN and CLOCK_PIN
#define DATA_PIN 6
//#define CLOCK_PIN 13

// Define the array of leds
CRGB leds[NUM_LEDS];

void setup() { 
        Serial.begin(57600);
        Serial.println("resetting");
        FastLED.addLeds<WS2812,DATA_PIN,RGB>(leds,NUM_LEDS);
        FastLED.setBrightness(24);
}

void fadeall() { for(int i = 0; i < NUM_LEDS; i++) { leds[i].nscale8(250); } }

void loop() { 
        static uint8_t hue = 0;
        Serial.print("x");
        // First slide the led in one direction
        for(int i = 0; i < NUM_LEDS; i++) {
                // Set the i'th led to red 
                leds[i] = CHSV(hue++, 255, 255);
                // Show the leds
                FastLED.show(); 
                // now that we've shown the leds, reset the i'th led to black
                // leds[i] = CRGB::Black;
                fadeall();
                // Wait a little bit before we loop around and do it again
                delay(10);
        }
        Serial.print("x");

        // Now go in the other direction.  
        for(int i = (NUM_LEDS)-1; i >= 0; i--) {
                // Set the i'th led to red 
                leds[i] = CHSV(hue++, 255, 255);
                // Show the leds
                FastLED.show();
                // now that we've shown the leds, reset the i'th led to black
                // leds[i] = CRGB::Black;
                fadeall();
                // Wait a little bit before we loop around and do it again
                delay(10);
        }
}

Arduino实验场景图

【雕爷学编程】Arduino动手做(86)---4*4位 WS2812 全彩模块4-LMLPHP

07-26 07:29