【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP

🔥个人主页Quitecoder

🔥专栏数据结构与算法
【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP

1.非递归实现快速排序

那么怎样通过栈来实现排序的过程呢?

思路如下:

使用栈实现快速排序是。在递归的快速排序中,函数调用栈隐式地保存了每次递归调用的状态。但是在非递归的实现中,你需要显式地使用一个辅助栈来保存子数组的边界

以下是具体步骤和栈的操作过程:

  1. 初始化辅助栈
    创建一个空栈。栈用于保存每个待排序子数组的起始索引(begin)和结束索引(end)。

  2. 开始排序
    将整个数组的起始和结束索引作为一对入栈。这对应于最初的排序问题。

  3. 迭代处理
    在栈非空时,重复下面的步骤:

    • 弹出一对索引(即栈顶元素)来指定当前要处理的子数组。
    • 选择子数组的一个元素作为枢轴(pivot)进行分区(可以是第一个元素,也可以通过其他方法选择,下面我们还是用三数取中)。
    • 进行分区操作,这会将子数组划分为比枢轴小的左侧部分和比枢轴大的右侧部分,同时确定枢轴元素的最终位置。
  4. 处理子数组
    分区操作完成后,如果枢轴元素左侧的子数组(如果存在)有超过一个元素,则将其起始和结束索引作为一对入栈。同样,如果右侧的子数组(如果存在)也有超过一个元素,也将其索引入栈

  5. 循环
    继续迭代该过程,直到栈为空,此时所有的子数组都已经被正确排序。

所以主要思路就两个:

1.1 提取单趟排序

我们上篇文章讲到递归排序的多种方法,这里我们可以取其中的一种提取出单趟排序:

int Getmidi(int* a, int begin, int end)
{
	int midi = (begin + end) / 2;
	if (a[begin] < a[midi])
	{
		if (a[midi] < a[end])
			return midi;
		else if (a[begin] > a[end])
			return begin;
		else
			return end;
	}
	else
	{
		if (a[midi] > a[end])
			return midi;
		else if (a[end] < a[begin])
			return end;
		else
			return begin;
	}
}
void QuickSortHole(int* arr, int begin, int end) {
	if (begin >= end) {
		return;
	}
	int midi = Getmidi(arr, begin, end);
	Swap(&arr[midi], &arr[begin]);

	int key = arr[begin]; 
	int left = begin;
	int right = end;

	while (left < right) {
		while (left < right && arr[right] >= key) {
			right--;
		}
		arr[left] = arr[right];

		while (left < right && arr[left] <= key) {
			left++;
		}
		arr[right] = arr[left];
	}

	arr[left] = key; 
	QuickSortHole(arr, begin, left - 1);
	QuickSortHole(arr, left + 1, end);
}

接下来完成单趟排序函数:

int singlePassQuickSort(int* arr, int begin, int end) 
{
	if (begin >= end) {
		return;
	}

	// 选择枢轴元素
	int midi = Getmidi(arr, begin, end);
	Swap(&arr[midi], &arr[begin]);

	int key = arr[begin];  // 挖第一个坑
	int left = begin;  // 初始化左指针
	int right = end;   // 初始化右指针

	// 进行分区操作
	while (left < right) {
		// 从右向左找小于key的元素,放到左边的坑中
		while (left < right && arr[right] >= key) {
			right--;
		}
		arr[left] = arr[right];

		// 从左向右找大于key的元素,放到右边的坑中
		while (left < right && arr[left] <= key) {
			left++;
		}
		arr[right] = arr[left];
	}

	// 将枢轴元素放入最后的坑中
	arr[left] = key;

	
	// 函数可以返回枢轴元素的位置,若需要进一步的迭代过程
	return left;
}

1.2 用栈实现的具体思路

以下面这串数组为例:
【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP

首先建立一个栈,将整个数组的起始和结束索引作为一对入栈
【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP

弹出一对索引(即栈顶元素)来指定当前要处理的子数组:这里即弹出0 9索引
找到枢轴6进行一次单趟排序:
【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP

针对这个数组:

6 3 4 9 5 8 7 2 1 10

我们使用“三数取中”法选择枢轴。起始位置的元素为6,结束位置的元素为10,中间位置的元素为5。在这三个元素中,6为中间大小的值,因此选择6作为枢轴。因为枢轴已经在第一个位置,我们可以直接开始单趟排序。

现在,开始单趟排序:

  1. 枢轴值为6
  2. 从右向左扫描,找到第一个小于6的数1
  3. 从左向右扫描,找到第一个大于6的数9
  4. 交换这两个元素。
  5. 继续进行上述步骤,直到左右指针相遇。

经过单趟排序后:

6 3 4 1 5 2 7 8 9 10

接下来需要将枢轴6放置到合适的位置。我们知道,最终左指针和右指针会停在第一个大于或等于枢轴值6的位置。在这个例子中,左右指针会停在7上。现在我们将6与左指针指向的位置的数交换:

5 3 4 1 2 6 7 8 9 10

现在枢轴值6处于正确的位置,其左侧所有的元素都小于或等于6,右侧所有的元素都大于或等于6

我们接下来完成这个入栈过程:让两个子数组的索引入栈
【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP

接着取0 4索引进行单趟排序并不断分区,分割的索引继续压栈,

1.3 代码实现

这里我们调用之前的栈的代码,基本声明如下:

typedef int STDataType;


typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST; 

void StackInit(ST* ps);
// 入栈
void StackPush(ST* ps, STDataType x);
// 出栈
void StackPop(ST* ps);
// 获取栈顶元素
STDataType StackTop(ST* ps);
// 获取栈中有效元素个数
int StackSize(ST* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
bool StackEmpty(ST* ps);
// 销毁栈
void StackDestroy(ST* ps);

我们接下来完成排序代码,首先建栈,初始化,并完成第一个压栈过程:

ST s;
StackInit(&s);
StackPush(&s, end);
StackPush(&s, begin);

实现一次单趟排序:

int left = StackTop(&s);
StackPop(&s);

int right = StackTop(&s);
StackPop(&s);

int keyi = singlePassQuickSort(a, left, right);

接着判断keyi左右是否还有子数组

if (left < keyi - 1)
{
	StackPush(&s, keyi - 1);
	StackPush(&s, left);
}
if (keyi + 1<right)
{
	StackPush(&s, right);
	StackPush(&s, keyi+1);
}

将此过程不断循环即为整个过程,总代码如下:

void Quicksortst(int* a, int begin, int end)
{
	ST s;
	StackInit(&s);
	StackPush(&s, end);
	StackPush(&s, begin);

	while (!StackEmpty(&s))
	{
		int left = StackTop(&s);
		StackPop(&s);

		int right = StackTop(&s);
		StackPop(&s);

		int keyi = singlePassQuickSort(a, left, right);
		if (left < keyi - 1)
		{
			StackPush(&s, keyi - 1);
			StackPush(&s, left);
		}
		if (keyi + 1<right)
		{
			StackPush(&s, right);
			StackPush(&s, keyi+1);
		}
	}
	StackDestroy(&s);
}

2.归并排序

假如我们已经有了两个已经排序好的数组,我们如何让他们并为一个有序的数组呢?

【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP
我们的做法就是用两个索引进行比较,然后插入一个新的数组完成排序,这就是归并排序的基础思路

那如果左右不是两个排序好的数组呢?

下面是归并排序的算法步骤:

  1. 递归分解数组:如果数组的长度大于1,首先将数组分解成两个部分。通常这是通过将数组从中间切分为大致相等的两个子数组

  2. 递归排序子数组:递归地对这两个子数组进行归并排序,直到每个子数组只包含一个元素或为空,这意味着它自然已经排序好

  3. 合并排序好的子数组:将两个排序好的子数组合并成一个排序好的数组。这通常通过设置两个指针分别指向两个子数组的开始,比较它们指向的元素,并将较小的元素放入一个新的数组中,然后移动指针。重复此过程,直到所有元素都被合并进新数组

【数据结构与算法】:非递归实现快速排序、归并排序-LMLPHP
所以我们得需要来实现这一过程,首先声明函数并建造新的数组:

void MergeSort(int* a, int n)
{
	int* tmp =(int *) malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	free(tmp);
}

由于我们不能每次开辟一遍数组,我们这里就需要一个子函数来完成递归过程:

void _MergrSort(int* a, int begin, int end, int* tmp)

首先,不断递归将数组分解

int mid = (begin + end) / 2;

if (begin >= end)
{
	return;
}
_MergrSort(a, begin, mid, tmp);
_MergrSort(a, mid+1, end, tmp);

接着获取分解的两个数组的各自的首端到尾端的索引:

int begin1 = begin, end1 = mid;
int begin2 = mid + 1, end2 = end;

令要插入到数组tmp的起点为begin处

int begin1 = begin, end1 = mid;
int begin2 = mid + 1, end2 = end;
int i = begin;

接下来遍历两个数组,无论谁先走完都跳出循环

while (begin1 <= end1 && begin2 <= end2)
{
	if (a[begin1] < a[begin2])
	{
		tmp[i] = a[begin1];
		i++;
		begin1++;
	}
	else
	{
		tmp[i] = a[begin2];
		i++;
		begin2++;
	}
}

这时会有一方没有遍历完,按照顺序插入到新数组中即可

while (begin1 <= end1)
{
	tmp[i] = a[begin1];
	begin1++;
	i++;
}
while (begin2<= end2)
{
	tmp[i] = a[begin2];
	begin2++;
	i++;
}

插入到新数组后,我们拷贝到原数组中即完成了一次排序

	memcpy(a+begin,tmp+begin,sizeof(int )*(end-begin+1));

完整代码如下:

void _MergrSort(int* a, int begin, int end, int* tmp)
{
	int mid = (begin + end) / 2;

	if (begin >= end)
	{
		return;
	}
	_MergrSort(a, begin, mid, tmp);
	_MergrSort(a, mid+1, end, tmp);
	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i] = a[begin1];
			i++;
			begin1++;
		}
		else
		{
			tmp[i] = a[begin2];
			i++;
			begin2++;
		}
	}
	while (begin1 <= end1)
	{
		tmp[i] = a[begin1];
		begin1++;
		i++;
	}
	while (begin2<= end2)
	{
		tmp[i] = a[begin2];
		begin2++;
		i++;
	}
	memcpy(a+begin,tmp+begin,sizeof(int )*(end-begin+1));
}
void MergeSort(int* a, int n)
{
	int* tmp =(int *) malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	_MergrSort(a, 0, n - 1, tmp);
	free(tmp);
}
  • 排序好的左半部分和右半部分接着被合并。为此,使用了两个游标begin1begin2,它们分别指向两个子数组的起始位置,然后比较两个子数组当前元素,将较小的元素拷贝到tmp数组中。这个过程继续直到两个子数组都被完全合并
  • 在所有元素都被合并到tmp数组之后,使用memcpy将排序好的部分拷贝回原数组a。这个地方注意memcpy的第三个参数,它是sizeof(int)*(end - begin + 1)表示拷贝的总大小,单位是字节
  • begin和end变量在这里表示待排序和合并的数组部分的起止索引

本节内容到此结束!感谢大家阅读!

03-18 23:56