基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

一、介绍 害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【“蚂蚁(ants)”, “蜜蜂(bees)”, “甲虫(beetle)”, “毛虫(catterpillar)”, “蚯蚓(earthworms)”, “蜚蠊(earwig)”, “蚱蜢(grasshopper)”, “飞蛾(moth)”, “鼻涕虫(slug)”...

【现代深度学习技术】卷积神经网络 | 图像卷积

文章目录 一、互相关运算二、卷积层三、图像中目标的边缘检测四、学习卷积核五、互相关和卷积六、特征映射和感受野小结   上节我们解析了卷积层的原理,现在我们看看它的实际应用。由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例。 一、互相关运算   严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算。根据【现代深度学习技术】卷积神...

【第3章:卷积神经网络(CNN)——3.8 迁移学习与微调策略】

迁移学习示意图 一、灵魂拷问:为什么你的CNN总在重复造轮子? 当你试图用500张狗狗照片训练一个世界级分类器时,是不是觉得就像让小学生直接攻读量子物理一样力不从心?这时,迁移学习的魔法就显现了。想象一下,如果能把ImageNet冠军模型变成你的专属AI助手,哪怕你的训练数据只够塞满一个U盘,那该有多爽!接下来,我们就来揭秘这背后的奥秘。 二、知识搬运的艺术:迁移学习全景观 2.1 预训练模型博物馆 迁移学...

【垃圾识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目选题+TensorFlow+图像识别

一、介绍 垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集(‘塑料’, ‘玻璃’, ‘纸张’, ‘纸板’, ‘金属’),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。 随着环境问题日益严重,垃圾分...

Pointnet++改进59:全网首发MogaBlock(2024最新模块)|用于在纯基于卷积神经网络的模型中进行判别视觉表示学习,具有良好的复杂性和性能权衡

3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一          2.2 步骤二          2.3 步骤三 1.理论介绍 通过将内核尽可能全局化,现代卷积神经网络在计算机视觉任务中显示出巨大的潜力。然而,最近在深度神经网络(dnn)内的多阶博弈论相互作用方面的进展揭示了现代卷积神经网络的表示瓶颈,其中表达性相互作用不能随着核大小的增加而有效编码。为了应对这一挑...

动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目

一、介绍 动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。 在本项目中,旨在通过人工智能技术实现常见动物的自动识别。该系统...

动手学深度学习V2每日笔记(经典卷积神经网络LeNet)

本文的主要内容对沐神提供的代码中个人不太理解的内容进行笔记记录,内容不会特别严谨仅供参考。 1.函数目录 1.1 torch 2. LeNet LeNet是早期成功的神经网络先使用卷积层来学习图片空间信息然后使用全连接层来转换到类别空间 LeNet-5网络参数详解 3. 代码实现 3.1 model import torchfrom torch import nn class Reshape(torch....

【机器学习】卷积神经网络简介

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 卷积神经网络简介1. 引言2. CNN的基本概念2.1 什么是卷积神经网络2.2 CNN与传统神经网络的区别 3. CNN的核心组件3.1 卷积层3.2 激活函数3.3 池化层3.4 全连接层 4. CNN的工作原理5. 经典CNN架构5.1 LeNet-55....

Android-卷积神经网络(Convolutional Neural Network, CNN)

一个复杂且在Android开发中常见的算法是图像处理中的卷积神经网络(Convolutional Neural Network, CNN)。CNN被广泛用于图像识别、物体检测和图像分割等任务,其复杂性在于需要处理大量的图像数据、复杂的神经网络结构和高效的计算。 1. 卷积操作(Convolution) 数学原理: 卷积操作的核心是对输入图像的局部区域应用卷积核(即权重矩阵),并添加偏置项。 每个卷积核在输入...

人工智能、机器学习、神经网络、深度学习和卷积神经网络的概念和关系

连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 卷积神经网络(Convolutional Neural Networks, CNN)--是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算...
© 2025 LMLPHP 关于我们 联系我们 友情链接 耗时0.004064(s)
2025-04-25 23:07:12 1745593632