给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。

图中的每个节点都包含它的值 valint) 和其邻居的列表(list[Node])。

class Node {
    public int val;
    public List<Node> neighbors;
}

测试用例格式:
简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1),第二个节点值为 2(val = 2),以此类推。该图在测试用例中使用邻接列表表示。

邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。

给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。

示例 1:
LeetCode 133. Clone Graph【图,DFS,BFS,哈希表】中等-LMLPHP

输入:adjList = [[2,4],[1,3],[2,4],[1,3]]
输出:[[2,4],[1,3],[2,4],[1,3]]
解释:
图中有 4 个节点。
节点 1 的值是 1,它有两个邻居:节点 24 。
节点 2 的值是 2,它有两个邻居:节点 13 。
节点 3 的值是 3,它有两个邻居:节点 24 。
节点 4 的值是 4,它有两个邻居:节点 13

示例 2:
LeetCode 133. Clone Graph【图,DFS,BFS,哈希表】中等-LMLPHP

输入:adjList = [[]]
输出:[[]]
解释:输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。

示例 3:

输入:adjList = []
输出:[]
解释:这个图是空的,它不含任何节点。

示例 4:
LeetCode 133. Clone Graph【图,DFS,BFS,哈希表】中等-LMLPHP

输入:adjList = [[2],[1]]
输出:[[2],[1]]

提示:

  1. 节点数不超过 100 。
  2. 每个节点值 Node.val 都是唯一的,1 <= Node.val <= 100
  3. 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
  4. 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
  5. 图是连通图,你可以从给定节点访问到所有节点。

对于本题而言,我们要明确图的深拷贝是在做什么,对于一张图而言,它的深拷贝即。因此,为了深拷贝出整张图,我们需要知道整张图的结构以及对应节点的值。

由于题目只给了我们一个节点的引用,因此为了知道整张图的结构及对应节点的值,要从给定的节点出发,进行「图的遍历」,并在遍历的过程中完成图的深拷贝

为了避免在深拷贝时陷入死循环,要理解图的结构。对于一张无向图,任何给定的无向边都可以表示为两个有向边,即如果节点 A A A 和节点 B B B 之间存在无向边,则表示该图具有从节点 A A A 到节点 B B B 的有向边和从节点 B B B 到节点 A A A 的有向边。

为了防止多次遍历同一个节点,陷入死循环;为了在设置 n e i g h b o r s neighbors neighbors 邻接点时,将克隆图中点 A ′ A' A 的邻接点 B ′ B' B 设置为「原图中 A A A 的邻接点 B B B 在克隆图中的复制节点 B ′ B' B 」,我们需要用一种数据结构记录已经被克隆过的节点——用一个哈希表存储所有已被访问和克隆的节点。哈希表中的 k e y key key 是原始图中的节点, v a l u e value value 是克隆图中的对应节点。。

解法1 DFS+哈希表

如下图,我们给定无向边边 A − B A - B AB ,表示 A A A 能连接到 B B B ,且 B B B 能连接到 A A A 。如果不对访问过的节点做标记,则会陷入死循环中。
LeetCode 133. Clone Graph【图,DFS,BFS,哈希表】中等-LMLPHP

  • 如果当前访问的节点不在哈希表中,则创建它的克隆节点并存储在哈希表中;否则直接返回哈希表中的克隆节点。注意:。如果不保证这种顺序,可能会在递归中再次遇到同一个节点,再次遍历该节点时,陷入死循环。
    LeetCode 133. Clone Graph【图,DFS,BFS,哈希表】中等-LMLPHP
  • 递归调用每个节点的邻接点。每个节点递归调用的次数等于邻接点的数量,每一次调用返回其对应邻接点的克隆节点,将其放入当前克隆节点的邻接表中。这样就可以克隆给定的节点和其邻接点。
class Solution {
public:
    unordered_map<Node*, Node*> vis;
    Node* cloneGraph(Node* node) {
        if (node == nullptr) return node;
        // 如果该节点已经被访问过了,则直接从哈希表中取出对应的克隆节点返回
        if (vis.find(node) != vis.end()) return vis[node];
        // 克隆节点,注意为了深拷贝我们不会克隆它的邻居的列表
        Node* cloneNode = new Node(node->val);
        // 哈希表存储
        vis[node] = cloneNode;
        // 遍历该节点的邻居并更新克隆节点的邻居列表
        for (Node *neighbor : node->neighbors)
            cloneNode->neighbors.emplace_back(cloneGraph(neighbor));
        return cloneNode;
    }
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) ,其中 n n n 表示节点数量。深度优先搜索遍历图的过程中每个节点只会被访问一次。
  • 空间复杂度: O ( n ) O(n) O(n) 。存储克隆节点和原节点的哈希表需要 O ( n ) O(n) O(n) 的空间,递归调用栈需要 O ( h ) O(h) O(h) 的空间,其中 h h h 是图的深度,经过放缩可以得到 O ( h ) = O ( n ) O(h) = O(n) O(h)=O(n) ,因此总体空间复杂度为 O ( n ) O(n) O(n)

解法2 BFS+哈希表

同样,我们也可以用广度优先搜索来进行「图的遍历」。方法一与方法二的区别仅在于搜索的方式。深度优先搜索以深度优先,广度优先搜索以广度优先。这两种方法都需要借助哈希表记录被克隆过的节点来避免陷入死循环。

  1. 使用一个哈希表 v i s vis vis 存储所有已被访问和克隆的节点。哈希表中的 k e y key key 是原始图中的节点, v a l u e value value 是克隆图中的对应节点。
  2. 将题目给定的节点添加到队列。克隆该节点并存储到哈希表中。
  3. 每次从队列首部取出一个节点,遍历该节点的所有邻接点。
    1. 如果某个邻接点已被访问,则该邻接点一定在 v i s vis vis 中,那么从 v i s vis vis 获得该邻接点;
    2. 否则创建一个新的节点存储在 v i s vis vis 中,并将邻接点添加到队列。
    3. 克隆的邻接点添加到克隆图对应节点的邻接表中。
  4. 重复上述操作直到队列为空,则整个图遍历结束。
class Solution {
public:
    Node* cloneGraph(Node* node) {
        if (node == nullptr) return nullptr;
        unordered_map<Node*, Node*> vis;
        // 将题目给定的节点添加到队列
        queue<Node*> q;
        q.push(node);
        // 克隆第一个节点并存储到哈希表中
        vis[node] = new Node(node->val);
        
        while (!q.empty()) {
            // 取出队列头节点
            Node *cur = q.front(); q.pop();                
            for (auto& neighbor: cur->neighbors) {
                if (vis.find(neighbor) == vis.end()) {
                    // 如果没有被访问过,就克隆并存储在哈希表中
                    vis[neighbor] = new Node(neighbor->val);
                    q.push(neighbor);
                }
                // 更新当前节点的邻居列表
                vis[cur]->neighbors.emplace_back( vis[neighbor] );
            }
        }
        return vis[node];
    }
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) ,其中 n n n 表示节点数量。广度优先搜索遍历图的过程中每个节点只会被访问一次。
  • 空间复杂度: O ( n ) O(n) O(n) 。哈希表使用 O ( n ) O(n) O(n) 的空间。广度优先搜索中的队列在最坏情况下会达到 O ( n ) O(n) O(n) 的空间复杂度,因此总体空间复杂度为 O ( n ) O(n) O(n)
09-05 18:03