LeetCode 1095. 山脉数组中查找目标值【数组,二分】1827-LMLPHP

(这是一个 交互式问题 )

给你一个 山脉数组 mountainArr,请你返回能够使得 mountainArr.get(index) 等于 target 最小 的下标 index 值。

如果不存在这样的下标 index,就请返回 -1

何为山脉数组?如果数组 A 是一个山脉数组的话,那它满足如下条件:

首先A.length >= 3

其次,在 0 < i < A.length - 1 条件下,存在 i 使得:

  • A[0] < A[1] < ... A[i-1] < A[i]
  • A[i] > A[i+1] > ... > A[A.length - 1]

你将 不能直接访问该山脉数组,必须通过 MountainArray 接口来获取数据:

  • MountainArray.get(k) - 会返回数组中索引为k 的元素(下标从 0 开始)
  • MountainArray.length() - 会返回该数组的长度

注意:
对 MountainArray.get 发起超过 100 次调用的提交将被视为错误答案。此外,任何试图规避判题系统的解决方案都将会导致比赛资格被取消。

为了帮助大家更好地理解交互式问题,我们准备了一个样例 “答案”:https://leetcode-cn.com/playground/RKhe3ave,请注意这 不是一个正确答案

示例 1:

输入:array = [1,2,3,4,5,3,1], target = 3
输出:2
解释:3 在数组中出现了两次,下标分别为 25,我们返回最小的下标 2

示例 2:

输入:array = [0,1,2,4,2,1], target = 3
输出:-1
解释:3 在数组中没有出现,返回 -1

提示:

  • 3 <= mountain_arr.length() <= 10000
  • 0 <= target <= 10^9
  • 0 <= mountain_arr.get(index) <= 10^9

解法 三次二分

显然,如果山脉数组是一个单调递增或者单调递减的序列,那么我们可以通过二分法迅速找到目标值。

而现在题目中有一个单调递增序列(峰值左边)和一个单调递减序列(峰值右边),我们只是不知道两个序列的分割点,即峰值在哪里。所以我们第一步应该首先找到峰值

而峰值也可以使用二分法(或者三分法,对 l , r l, r l,r 找到两个三分点 l m i d , r m i d lmid, rmid lmid,rmid )寻找:

  • 对于一个范围 [ i , j ] [i, j] [i,j] ,我们可以先找到范围 [ i , j ] [i, j] [i,j] 中间连续的两个点 m i d mid mid m i d + 1 mid + 1 mid+1
  • 如果 m o u n t a i n A r r . g e t ( m i d + 1 ) > m o u n t a i n A r r . g e t ( m i d ) mountainArr.get(mid + 1) > mountainArr.get(mid) mountainArr.get(mid+1)>mountainArr.get(mid) ,那么可以知道峰值在范围 [ m i d + 1 , j ] [mid + 1, j] [mid+1,j] 内;
  • 如果 m o u n t a i n A r r . g e t ( m i d + 1 ) < m o u n t a i n A r r . g e t ( m i d ) mountainArr.get(mid + 1) < mountainArr.get(mid) mountainArr.get(mid+1)<mountainArr.get(mid) ,那么可以知道峰值在范围 [ i , m i d ] [i, mid] [i,mid] 内。
  • 通过这样的方法,我们可以在 O ( log ⁡ n ) O(\log n) O(logn) 的时间内找到峰值所处的下标。
    LeetCode 1095. 山脉数组中查找目标值【数组,二分】1827-LMLPHP

这个方法的正确性在于我们二分的目标是相邻位置数的差值,我们每次判断的是 m o u n t a i n A r r . g e t ( m i d + 1 ) − m o u n t a i n A r r . g e t ( m i d ) mountainArr.get(mid + 1) - mountainArr.get(mid) mountainArr.get(mid+1)mountainArr.get(mid) 0 0 0 的大小关系。这个差值组成的数组保证了单调递增的部分差值均为正数,单调递减的部分差值均为负数,整个数组呈现 [正数,正数,正数,...,负数,负数] 这样前半部分均为正数,后半部分均为负数的性质,满足单调性(二段性),因此我们可以使用二分查找。

以示例 1 为例,我们对整个数组进行差分,即除了第一个数每个数都减去前一个数得到新的数组,最终我们得到 [ 1 , 1 , 1 , 1 , − 2 , − 2 ] [1, 1, 1, 1, -2, -2] [1,1,1,1,2,2] ,整个差分数组满足单调性,可以应用二分法。

接下来,只需要使用二分法在单调序列中找到目标值即可,注意二分法要使用两次,为了编码简洁可以将二分法封装成函数。

  1. 先使用二分法找到数组的峰值。
  2. 在峰值左边使用二分法寻找目标值。
  3. 如果峰值左边没有目标值,那么使用二分法在峰值右边寻找目标值。
class Solution {
private:
    int binarySearch(MountainArray &mountain, int target, int l, int r, int key(int)) {
        target = key(target);
        while (l <= r) {
            int m = l + r >> 1;
            int cur = key(mountain.get(m));
            if (cur == target) return m;
            else if (cur < target) l = m + 1;
            else r = m - 1; 
        }
        return -1;
    }
public:
    int findInMountainArray(int target, MountainArray &mountainArr) {
        int l = 0, r = mountainArr.length() - 1;
        while (l < r) {
            int m = l + r >> 1;
            if (mountainArr.get(m) < mountainArr.get(m + 1)) l = m + 1; // 在右边
            else r = m;
        }
        int peak = l;
        int index = binarySearch(mountainArr, target, 0, peak, 
            [](int x) -> int { return x; });
        if (index != -1) return index;
        return binarySearch(mountainArr, target, peak + 1, mountainArr.length() - 1, 
            [](int x) -> int { return -x; });
    }
};

复杂度分析:

  • 时间复杂度: O ( log ⁡ n ) O(\log n) O(logn)
  • 空间复杂度: O ( 1 ) O(1) O(1)
10-15 23:31