一、stage划分算法原理

1、图解

17、stage划分算法原理及DAGScheduler源码分析-LMLPHP

Job->Stage->Task

开发完一个应用以后,把这个应用提交到Spark集群,这个应用叫Application。这个应用里面开发了很多代码,这些代码里面凡是遇到一个action操作,就会产生一个job任务。

一个Application有一个或多个job任务。job任务被DAGScheduler划分为不同stage去执行,stage是一组Task任务。Task分别计算每个分区partition上的数据,
Task数量=分区partition数量。 stage划分原理:
DAGScheduler的stage划分算法总结:会从触发action操作的那个rdd开始往前倒推,首先会为最后一个rdd创建一个stage,然后往前倒推的时候,如果发现对某个rdd是宽依赖,
那么就会将宽依赖的那个rdd创建一个新的stage,那个rdd就是新的stage的最后一个rdd,然后依次类,继续往前倒推,根据窄依赖,或者宽依赖,进行stage的划分,直到所有
的rdd全部遍历完为止;

总结:遇到一个宽依赖就分一个stage

二、DAGScheduler源码分析

1、

###org.apache.spark/SparkContext.scala

// 调用SparkContext,之前初始化时创建的dagScheduler的runJob()方法
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
resultHandler, localProperties.get) ###org.apache.spark.scheduler/DAGScheduler.scala /**
* DAGScheduler的job调度的核心入口
*/
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
allowLocal: Boolean,
callSite: CallSite,
listener: JobListener,
properties: Properties = null)
{
// 第一步,使用触发job的最后一个RDD,创建finalStage
var finalStage: Stage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
// 创建一个stage对象,并且将stage加入DAGScheduler内部缓存中
finalStage = newStage(finalRDD, partitions.size, None, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
if (finalStage != null) {
// 第二步,用finalStage创建一个job,这个job的最后一个stage,就是finalStage
val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions (allowLocal=%s)".format(
job.jobId, callSite.shortForm, partitions.length, allowLocal))
logInfo("Final stage: " + finalStage + "(" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val shouldRunLocally =
localExecutionEnabled && allowLocal && finalStage.parents.isEmpty && partitions.length == 1
val jobSubmissionTime = clock.getTimeMillis()
if (shouldRunLocally) {
// Compute very short actions like first() or take() with no parent stages locally.
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, Seq.empty, properties))
runLocally(job)
} else {
// 第三步,将job加入内存缓存中
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.resultOfJob = Some(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
// 第四步,使用submitStage()方法提交finalStage
// 这个方法的调用,其实会导致第一个stage提交,并且导致其他所有的stage,都给放入waitingStages队列里了
submitStage(finalStage)
// stage划分算法,实在太重要了,必须对stage划分算法很清晰,知道自己编写的spark application被划分了几个job,每个job被划分成了几个stage
// 每个stage,包括了你的那些代码,只有知道了那个stage包括了哪些自己的代码之后,在线上,如果发现某个stage执行特别慢
// 或者某个stage一直报错,才能针对那个stage对应的代码,去排查问题,或者是性能调优 // stage划分算法总结
// 1. 从finalStage倒推
// 2. 通过宽依赖,来进行新的stage划分
// 3. 使用递归,优先提交父stage
}
}
// 提交等待的stage
submitWaitingStages()
} ###org.apache.spark.scheduler/DAGScheduler.scala // 提交stage的方法
// 这其实就是stage划分算法的入口,但是,stage划分算法,其实是由submitStage()和getMissingParentStages()方法共同组成的
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
// 调用getMissingParentStages()去获取当前这个stage的父stage
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
// 这里其实会反复递归调用,直到最初的stage,它没有父stage了,那么,此时,就会首先提交这个第一个stage,stage0
// 其余的stage,此时,全部都在waitingStages里面
if (missing == Nil) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
// 递归调用submitStage()方法,去提交父stage
// 这里的递归,就是stage划分算法的推动者和精髓
for (parent <- missing) {
submitStage(parent)
}
// 并且将当前stage放入waitingStages等待执行的stage队列中
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id)
}
} ###org.apache.spark.scheduler/DAGScheduler.scala // 获取某个stage的父stage
// 这个方法的意思,就是说,对于一个stage,如果它的最后一个rdd的所有依赖,都是窄依赖,那么就不会创建任何新的stage
// 但是,只要发现这个stage的rdd宽依赖了某个rdd,那么就用宽依赖的那个rdd,创建一个新的stage,然后立即将新的stage返回
private def getMissingParentStages(stage: Stage): List[Stage] = {
val missing = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent StackOverflowError
// caused by recursively visiting
val waitingForVisit = new Stack[RDD[_]]
def visit(rdd: RDD[_]) {
if (!visited(rdd)) {
visited += rdd
if (getCacheLocs(rdd).contains(Nil)) {
// 遍历rdd的依赖
// 所以说,针对之前那个流程图,其实对于每一种有shuffle的操作,比如groupByKey、reduceByKey、countByKey
// 等操作,底层对应了三个RDD,MapPartitionsRDD、ShuffleRDD、MapPartitionsRDD,会划分为两个stage
for (dep <- rdd.dependencies) {
dep match {
// 如果是宽依赖
case shufDep: ShuffleDependency[_, _, _] =>
// 那么使用宽依赖的那个rdd,创建一个stage,并且会将isShuffleMap设置为true
// 默认最后一个stage,不是shuffleMap stage,但是finalStage之前所有的stage,都是shuffleMap stage
val mapStage = getShuffleMapStage(shufDep, stage.jobId)
if (!mapStage.isAvailable) {
missing += mapStage
}
// 如果是窄依赖,那么将依赖的rdd放入栈中
case narrowDep: NarrowDependency[_] =>
waitingForVisit.push(narrowDep.rdd)
}
}
}
}
}
// 首先往栈中,推入了stage的最后一个rdd
waitingForVisit.push(stage.rdd)
// 进行while循环
while (!waitingForVisit.isEmpty) {
// 对stage的最后一个rdd,调用自己内部定义的visit()方法
visit(waitingForVisit.pop())
}
missing.toList
} ###org.apache.spark.scheduler/DAGScheduler.scala // 提交stage,为stage创建一批task,task数量与partition数量相同
private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// Get our pending tasks and remember them in our pendingTasks entry
stage.pendingTasks.clear() // First figure out the indexes of partition ids to compute.
// 获取你要创建的task的数量
val partitionsToCompute: Seq[Int] = {
if (stage.isShuffleMap) {
(0 until stage.numPartitions).filter(id => stage.outputLocs(id) == Nil)
} else {
val job = stage.resultOfJob.get
(0 until job.numPartitions).filter(id => !job.finished(id))
}
} val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" pool
null
} // 将stage加入runningStages队列
runningStages += stage
// SparkListenerStageSubmitted should be posted before testing whether tasks are
// serializable. If tasks are not serializable, a SparkListenerStageCompleted event
// will be posted, which should always come after a corresponding SparkListenerStageSubmitted
// event.
stage.latestInfo = StageInfo.fromStage(stage, Some(partitionsToCompute.size))
outputCommitCoordinator.stageStart(stage.id)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties)) // TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
// Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
// the serialized copy of the RDD and for each task we will deserialize it, which means each
// task gets a different copy of the RDD. This provides stronger isolation between tasks that
// might modify state of objects referenced in their closures. This is necessary in Hadoop
// where the JobConf/Configuration object is not thread-safe.
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] =
if (stage.isShuffleMap) {
closureSerializer.serialize((stage.rdd, stage.shuffleDep.get) : AnyRef).array()
} else {
closureSerializer.serialize((stage.rdd, stage.resultOfJob.get.func) : AnyRef).array()
}
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
// In the case of a failure during serialization, abort the stage.
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString)
runningStages -= stage
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}")
runningStages -= stage
return
} // 为stage创建指定数量的task
// 这里很关键的一点是,task的最佳位置计算算法
val tasks: Seq[Task[_]] = if (stage.isShuffleMap) {
partitionsToCompute.map { id =>
// 给每一个partition创建一个task,给每个task计算最佳位置
val locs = getPreferredLocs(stage.rdd, id)
val part = stage.rdd.partitions(id)
// 对于finalStage之外的stage,它的isShuffleMap都是true,所以会创建ShuffleMapTask
new ShuffleMapTask(stage.id, taskBinary, part, locs)
}
} else {
// 如果不是shuffleMap,那么就是finalStage,finalStage是创建ResultTask
val job = stage.resultOfJob.get
partitionsToCompute.map { id =>
val p: Int = job.partitions(id)
val part = stage.rdd.partitions(p)
val locs = getPreferredLocs(stage.rdd, p)
new ResultTask(stage.id, taskBinary, part, locs, id)
}
} if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingTasks ++= tasks
logDebug("New pending tasks: " + stage.pendingTasks)
// 最后,针对stage的task,创建TaskSet对象,调用taskScheduler的submitTasks()方法,提交taskSet
taskScheduler.submitTasks(
new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should post
// SparkListenerStageCompleted here in case there are no tasks to run.
outputCommitCoordinator.stageEnd(stage.id)
listenerBus.post(SparkListenerStageCompleted(stage.latestInfo))
logDebug("Stage " + stage + " is actually done; %b %d %d".format(
stage.isAvailable, stage.numAvailableOutputs, stage.numPartitions))
runningStages -= stage
}
} ###org.apache.spark.scheduler/DAGScheduler.scala private[spark]
def getPreferredLocs(rdd: RDD[_], partition: Int): Seq[TaskLocation] = {
getPreferredLocsInternal(rdd, partition, new HashSet)
} ###org.apache.spark.scheduler/DAGScheduler.scala /**
* 计算每个task对应的partition的最佳位置,说白了,就是从stage的最后一个rdd开始,去找哪个rdd的partition,是被cache了,或者checkpoint了
* 那么,task的最佳位置,就是缓存的/checkpoint的partition的位置
* 因为这样的话,task就在哪个节点上执行,不需要计算之前的rdd了
*/
private def getPreferredLocsInternal(
rdd: RDD[_],
partition: Int,
visited: HashSet[(RDD[_],Int)])
: Seq[TaskLocation] =
{
// If the partition has already been visited, no need to re-visit.
// This avoids exponential path exploration. SPARK-695
if (!visited.add((rdd,partition))) {
// Nil has already been returned for previously visited partitions.
return Nil
}
// If the partition is cached, return the cache locations
// 寻找当前pdd的partiton是否缓存了
val cached = getCacheLocs(rdd)(partition)
if (!cached.isEmpty) {
return cached
}
// If the RDD has some placement preferences (as is the case for input RDDs), get those
// 寻找当前rdd的partition是否checkpoint了
val rddPrefs = rdd.preferredLocations(rdd.partitions(partition)).toList
if (!rddPrefs.isEmpty) {
return rddPrefs.map(TaskLocation(_))
}
// If the RDD has narrow dependencies, pick the first partition of the first narrow dep
// that has any placement preferences. Ideally we would choose based on transfer sizes,
// but this will do for now.
// 最后,递归调用自己,去寻找rdd的父rdd,看看对应的partition是否缓存或者checkpoint了
rdd.dependencies.foreach {
case n: NarrowDependency[_] =>
for (inPart <- n.getParents(partition)) {
val locs = getPreferredLocsInternal(n.rdd, inPart, visited)
if (locs != Nil) {
return locs
}
}
case _ =>
}
// 如果这个stage,从最后一个rdd,到最开始的rdd,partition都没有被缓存或者checkpoint,那么task的最佳位置(PreferredLocs),就是Nil Nil
}
05-11 19:56