文章目的

  • 了解 Linux 内核网络架构
  • 通过网络包过滤器或者防火墙获得使用的 IP 数据包(分组)管理技巧
  • 熟悉如何在 Linux 内核级别使用套接字

概述

        网络应用程序的开发过去这些年按照指数级增长,这样增加了对系统网络子系统的速度要求和产品化要求。网络子系统不是 Linux 内核必须的组件(Linux 内核可以在没有网络支持的情况下编译通过)。然而非常少的计算系统(即便是嵌入式设备)很难没有网络支持,因为它们都需要联网。现代操作系统使用 TCP/IP 协议栈,协议栈实现了传输层以下的所有协议层,应用层协议通常在用户空间实现(HTTP、FTP、SSH等)。

用户空间网络

        用户空间中,网络网络通信被抽象为套接字(socket),套接字抽象了通信通道,是基于内核 TCP/IP 协议栈交互接口。一个 IP 套接字和一个 IP 地址、传输层协议(TCP、UDP 等)、以及一个端口关联。使用套接字的普通函数调用包括:创建(socket)、初始化(bind)、连接(connect)、关闭套接字(close)。

        TCP 套接字通过 read/write 或者 recv/send 调用完成网络通信,而 UDP 使用 recvfrom/sento 接口调用完成网络调用。通信过程中的传输和接收操作对于应用程序来讲是透明的,即数据的封装以及网络传输由内核决定。然而,也可以通过原始套接字在用户空间实现 TCP/IP 协议栈(传教套接字时使用 PF_PACKET 选项),或者在内核实现应用层协议(比如 TUX web server)。

        更多关于用户空间使用套接字编程的信息,参考 Beej's Guide to Network Programming 

Linux 网络通信

        Linux 内核提供了网络包工作的三个基本数据结构:struct socket、struct sock、struct sk_buff。

        前两个是套接字的抽象:

  • struct socket 和用户空间的抽象非常相似,也就是用来编写网络应用程序的 BSD 套接字
  • struct sock 或者 Linux 术语中的 INET 套接字是套接字的网络层表示。

        这两个结构是有关联的:struct socket 包含 INET 套接字字段,struct sock 有一个 BSD 套接字包含它。

        struct sk_buff 结构是网络包及其状态的表示。当内核接到一个一个数据包时,就会创建这个结构,数据包可以是从用户空间传来的也可以是从网络接口传来的。

struct socket 结构

        struct socket 结构是 BSD 套接字在内核的表示,在它上面执行的操作和内核提供的操作非常类似(通过系统调用)。一些套接字的常见操作(创建、初始化/绑定、关闭等)会导致特定的系统调用,这些系统调用会使用 struct socket 结构。

        struct socket 操作在 net/socket.c 中实现,它是和具体协议类型无关的。因此,struct socket 结构是一个在各种网络操作实现上的一个通用接口。通常,这些操作以 sock_ 前缀开始。

socket 结构上的操作

creation

创建操作和用户空间调用 socket() 函数类似,但是创建出的套接字被存到了 res 参数中:

  • int sock_create(int family, int typ, int protocol, struct socket **res) 在 socket() 系统调用后创建一个套接字;
  • Int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **ret) 创建一个内核套接字;
  • int sock_create_lite(int family, int type, int protocol, struct **res) 创建一个内核套接字,不进行 sanity 检查

这些调用的如下:

  • net,是一个网络名字空间的引用,通常我们使用 init_net 初始化它
  • family 表示用于信息传输的协议家族,以 PF_  字符串开头,带上协议家族,这个常量表示协议家族,定义在 linux/socket.h 中,TCP/IP 通常使用 PF_INET
  • type 是套接字的类型,定义在 linux/net.h 中,通常面向连接的通信采用 SOCK_STREAM,而非连接通信采用 SOCK_DGRAM
  • protocol 表示采用的协议,和 type 相关,定义在 linux/in.h 中,TCP 使用 IPROTO_TCP,UDP 使用 IPROTO_UDP。

        在内核空间创建 TCP 套接字,必须调用:

struct socket *sock;
int err;

err = sock_create_kern(&init_net, PF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
if (err < 0) {
        /* handle error */
}

        创建一个 UDP 套接字:

struct socket *sock;
int err;

err = sock_create_kern(&init_net, PF_INET, SOCK_DGRAM, IPPROTO_UDP, &sock);
if (err < 0) {
        /* handle error */
}

         sys_socket() 系统调用处理函数(handler)中有相关使用举例:

SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
      int retval;
      struct socket *sock;
      int flags;

      /* Check the SOCK_* constants for consistency.  */
      BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
      BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
      BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
      BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);

      flags = type & ~SOCK_TYPE_MASK;
      if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
              return -EINVAL;
      type &= SOCK_TYPE_MASK;

      if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
              flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;

      retval = sock_create(family, type, protocol, &sock);
      if (retval < 0)
              goto out;

      return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
}

closing

        关闭连接(面向连接的套接字)并释放相关资源:

  • void sock_release(struct socket *sock) 调用套接字结构 ops 字段的  release  函数:
void sock_release(struct socket *sock)
{
      if (sock->ops) {
              struct module *owner = sock->ops->owner;

              sock->ops->release(sock);
              sock->ops = NULL;
              module_put(owner);
      }
      //...
}

sending/receiving 消息

        使用下面函数进行消息发送和接收:

int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags);
int kernel_recvmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size, int flags);
int sock_sendmsg(struct socket *sock, struct msghdr *msg);
int kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size);

        消息发送和接收函数会调用套接字 ops 字段的 sendmsg、recvmsg 函数,具有 kernel_ 前缀的函数是套接字在内核中使用的。

        参数如下:

  • msg,是一个 struct msghdr 结构,包含着需要发送接收的消息。这个结构中最重要的成员是 msg_name 和 msg_namelen,对于 UDP 套接字,必须填充为发送消息的目标地址(struct sockaddr_in)
  • vec,一个 struct kvec 结构,包含一个指向缓冲器(包含数据和大小)的指针,这个结构和 struct iovec 结构类似(struct iovec 结构用于用户空间,而 struct kvec 结构用于内核空间数据)

        sys_sendto() 系统调用处理函数里有一些使用例程:

SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
              unsigned int, flags, struct sockaddr __user *, addr,
              int, addr_len)
{
      struct socket *sock;
      struct sockaddr_storage address;
      int err;
      struct msghdr msg;
      struct iovec iov;
      int fput_needed;

      err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
      if (unlikely(err))
              return err;
      sock = sockfd_lookup_light(fd, &err, &fput_needed);
      if (!sock)
              goto out;

      msg.msg_name = NULL;
      msg.msg_control = NULL;
      msg.msg_controllen = 0;
      msg.msg_namelen = 0;
      if (addr) {
              err = move_addr_to_kernel(addr, addr_len, &address);
              if (err < 0)
                      goto out_put;
              msg.msg_name = (struct sockaddr *)&address;
              msg.msg_namelen = addr_len;
      }
      if (sock->file->f_flags & O_NONBLOCK)
              flags |= MSG_DONTWAIT;
      msg.msg_flags = flags;
      err = sock_sendmsg(sock, &msg);

out_put:
      fput_light(sock->file, fput_needed);
out:
      return err;
}

        struct socket 的字段:

/**
 *  struct socket - general BSD socket
 *  @state: socket state (%SS_CONNECTED, etc)
 *  @type: socket type (%SOCK_STREAM, etc)
 *  @flags: socket flags (%SOCK_NOSPACE, etc)
 *  @ops: protocol specific socket operations
 *  @file: File back pointer for gc
 *  @sk: internal networking protocol agnostic socket representation
 *  @wq: wait queue for several uses
 */
struct socket {
      socket_state            state;

      short                   type;

      unsigned long           flags;

      struct socket_wq __rcu  *wq;

      struct file             *file;
      struct sock             *sk;
      const struct proto_ops  *ops;
};

        需要解释的字段有:

  • ops   -  这个结构存储一些协议相关的函数指针
  • sk     -  和套接字相关的 INET socket

struct proto_ops 结构

        struct proto_ops 结构包含特定操作的实现(TCP/UDP 等),这些函数会被 struct socket(sock_release(), sock_sendmsg() 等) 普通函数调用。

        struct proto_ops 结构也就包含了一些指向这些协议实现的指针:

struct proto_ops {
      int             family;
      struct module   *owner;
      int             (*release)   (struct socket *sock);
      int             (*bind)      (struct socket *sock,
                                    struct sockaddr *myaddr,
                                    int sockaddr_len);
      int             (*connect)   (struct socket *sock,
                                    struct sockaddr *vaddr,
                                    int sockaddr_len, int flags);
      int             (*socketpair)(struct socket *sock1,
                                    struct socket *sock2);
      int             (*accept)    (struct socket *sock,
                                    struct socket *newsock, int flags, bool kern);
      int             (*getname)   (struct socket *sock,
                                    struct sockaddr *addr,
                                    int peer);
      //...
}

        struct socket 的 ops 字段的初始化是通过 __sock_create() 函数实现的,通过调用 create() 函数,指定每个协议。一个等效的调用是 __sock_create() 函数的实现:

//...
      err = pf->create(net, sock, protocol, kern);
      if (err < 0)
              goto out_module_put;
//...

        这个会初始化这些函数指针为套接字指定协议类型的函数,sock_register() 和 sock_unregister() 调用用来填充 net_fanilies 向量。

        对于剩余的 socket 操作(除了创建、关闭、发送接收外),也会通过指针来调用,比如 bind 函数:

#define MY_PORT 60000

struct sockaddr_in addr = {
      .sin_family = AF_INET,
      .sin_port = htons (MY_PORT),
      .sin_addr = { htonl (INADDR_LOOPBACK) }
};

//...
      err = sock->ops->bind (sock, (struct sockaddr *) &addr, sizeof(addr));
      if (err < 0) {
              /* handle error */
      }
//...
09-30 16:47