【Langchain Agent研究】SalesGPT项目介绍(二)-CSDN博客

        上节课,我们介绍了salesGPT项目的初步的整体结构,poetry脚手架工具和里面的run.py。在run.py这个运行文件里,引用的最主要的类就是SalesGPT类,今天我们就来看一下这个SalesGPT类,这两节课程应该是整个项目最复杂、也是最有技术含量的部分了。

初步了解SalesGPT类

        salesGPT类在salesgpt文件夹下的agents.py这个类里:

【Langchain Agent研究】SalesGPT项目介绍(三)-LMLPHP

        agents.py这个文件里除了上面有一个装饰器方法外,其余都是SalesGPT这个类,而且有300多行代码:

【Langchain Agent研究】SalesGPT项目介绍(三)-LMLPHP

        不难看出,SalesGPT是整个项目的核心中的核心,因为这个类太大了,我们先从我们昨天在run.py里调用的方法里开始看,慢慢延伸。

        首先可以看出来SalesGPT是chain的一个子类,集成了Chain的属性和方法,我们来看一下这个类的类属性。

SalesGPT的类属性

        我们先来看SalesGPT的类属性:

    conversation_history: List[str] = []
    conversation_stage_id: str = "1"
    current_conversation_stage: str = CONVERSATION_STAGES.get("1")
    stage_analyzer_chain: StageAnalyzerChain = Field(...)
    sales_agent_executor: Union[AgentExecutor, None] = Field(...)
    knowledge_base: Union[RetrievalQA, None] = Field(...)
    sales_conversation_utterance_chain: SalesConversationChain = Field(...)
    conversation_stage_dict: Dict = CONVERSATION_STAGES

    model_name: str = "gpt-3.5-turbo-0613"

    use_tools: bool = False
    salesperson_name: str = "Ted Lasso"
    salesperson_role: str = "Business Development Representative"
    company_name: str = "Sleep Haven"
    company_business: str = "Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers."
    company_values: str = "Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service."
    conversation_purpose: str = "find out whether they are looking to achieve better sleep via buying a premier mattress."
    conversation_type: str = "call"

        第三行,CONVERSATION_STAGES是stages.py里引入的一个常量,用字典的get方法获取值:

# Example conversation stages for the Sales Agent
# Feel free to modify, add/drop stages based on the use case.

CONVERSATION_STAGES = {
    "1": "Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional. Your greeting should be welcoming. Always clarify in your greeting the reason why you are calling.",
    "2": "Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.",
    "3": "Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.",
    "4": "Needs analysis: Ask open-ended questions to uncover the prospect's needs and pain points. Listen carefully to their responses and take notes.",
    "5": "Solution presentation: Based on the prospect's needs, present your product/service as the solution that can address their pain points.",
    "6": "Objection handling: Address any objections that the prospect may have regarding your product/service. Be prepared to provide evidence or testimonials to support your claims.",
    "7": "Close: Ask for the sale by proposing a next step. This could be a demo, a trial or a meeting with decision-makers. Ensure to summarize what has been discussed and reiterate the benefits.",
    "8": "End conversation: It's time to end the call as there is nothing else to be said.",
}

        这个CONVERSATION_STAGES的字典定义了之前我们介绍过的8个销售阶段,你可以将这些阶段进行调整、缩减或增加,比如第二个阶段Qualification认证,这个阶段对于TOC的场景其实是没有必要的,就可以缩减掉了。

        第四行用了pydantic的Field,Field 是 Pydantic 中用于定义模型字段的辅助函数。它允许您为模型字段提供额外的元数据和验证规则。这里没有在Field里对模型字段进行规定,可以看下面这个案例理解Field的真实作用:

from pydantic import BaseModel, Field

class Item(BaseModel):
    name: str = Field(min_length=4, max_length=100, default='jerry')
    price: float = Field(gt=0, default=1.0)

# 验证规则
print(Item.model_json_schema()["properties"]["name"]["minLength"])
print(Item.model_json_schema()["properties"]["price"]["exclusiveMinimum"])
print(Item().name)
print(Item().price)

print(Item(name='Tom').name)

          我们对Item这个类的name和price进行了Field定义,比如name这个要求最小的长度是4个字符,默认的jerry是OK的,但是如果我们命名为Tom那么运行就会报错“1 validation error for Item
name”:

        我们注意到sales_agent_executor,knowledge_base都是Union类型的,Union 类型是 typing 模块中提供的一种类型提示工具,用于指定一个变量可以是多个类型之一:

sales_agent_executor: Union[AgentExecutor, None] = Field(...)

        可以看出,这行代码的意思是,sales_agent_executor 要么是AgentExecutor,要么是None。这意味着sales_agent_executor,knowledge_base 他们都可以为None。

        其他的类属性要么就是str,要么是bool,没有什么可以多介绍的了。

from_llm()类方法

        SalesGPT这个类中的方法大大小小有16个,我们先介绍最主要的、也是我们在run.py里直接使用过的,首先最重要的是from_llm()类方法,我们发现在SalesGPT类里没有一般的__init__构造方法,实例的构造是使用from_llm()这个类方法来实现的。

 用类方法替代构造器

        下面这个demo可以很好地解释什么是类方法和他怎么用于构造实例:

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    @classmethod
    def from_birth_year(cls, name, birth_year):
        age = 2024 - birth_year
        return cls(name, age)

# 使用类方法创建对象
person1=Person('Bob',19)
person2= Person.from_birth_year("Alice", 1990)
print(person1.name,person2.age)  # 输出:Bob,34

        这个Person类有一个常见的__init__()方法,可以用来实例化对象,正如person1;也可以用类方法,from_birth_year()来构造person2,注意类方法的一个标识就是方法上面的一个 @classmethod装饰器。而且类方法返回的对象也是这个类本身,所以他能够替代构造器。

        回过头来,我们来看这个类函数的入参和出参:

 @classmethod
 @time_logger
 def from_llm(cls, llm: ChatLiteLLM, verbose: bool = False, **kwargs) -> "SalesGPT":

        可以看出这个类函数的入参主要是就llm,是一个ChatLiteLLM大模型对象,其他的参数都放到了kwargs里,后面会用到。

构造一个StageAnalyzerChain

        这个类的第一个工作,是构造了一个StageAnalyzerChain的实例stage_analyzer_chain

stage_analyzer_chain = StageAnalyzerChain.from_llm(llm, verbose=verbose)

        StageAnalyzerChain这个类在chains.py文件里,这个类是LLMChain的子类,LLMChain也是我们的老朋友了,我们之前很多demo里都引用过它:

class StageAnalyzerChain(LLMChain):
    """Chain to analyze which conversation stage should the conversation move into."""

    @classmethod
    @time_logger
    def from_llm(cls, llm: ChatLiteLLM, verbose: bool = True) -> LLMChain:
        """Get the response parser."""
        stage_analyzer_inception_prompt_template = STAGE_ANALYZER_INCEPTION_PROMPT
        prompt = PromptTemplate(
            template=stage_analyzer_inception_prompt_template,
            input_variables=[
                "conversation_history",
                "conversation_stage_id",
                "conversation_stages",
            ],
        )
        return cls(prompt=prompt, llm=llm, verbose=verbose)

        和SalesGPT类似,StageAnalyzerChain这个类也没有构造器,也使用from_llm()这个类方法来构造实例,这个实例就是一个LLMChain,构造这个链所用的template来自于prompts.py这个文件里的常量STAGE_ANALYZER_INCEPTION_PROMPT,我们来具体研究一下这个提示词模板:

         通过这段提示词不难看出,对话处于哪个阶段的判断,是通过对话历史让LLM去做判断的,为了防止LLM给了错误的输出,提示词里反复强调了输出结果、输出格式,这些都是提示词工程里的内容。

 构造一个SalesConversationChain

        刚才,我们已经构造了一个用于对话阶段分析的agent,他的职责是根据对话历史判断对话阶段。下面我们要构造第二个agent,他的职责是负责和用户进行对话:

        if "use_custom_prompt" in kwargs.keys() and kwargs["use_custom_prompt"] is True:
            use_custom_prompt = deepcopy(kwargs["use_custom_prompt"])
            custom_prompt = deepcopy(kwargs["custom_prompt"])

            # clean up
            del kwargs["use_custom_prompt"]
            del kwargs["custom_prompt"]

            sales_conversation_utterance_chain = SalesConversationChain.from_llm(
                llm,
                verbose=verbose,
                use_custom_prompt=use_custom_prompt,
                custom_prompt=custom_prompt,
            )

        else:
            sales_conversation_utterance_chain = SalesConversationChain.from_llm(
                llm, verbose=verbose
            )

        首选判断一下在构造SalesGPT的时候,用户的入参里有没有use_custom_prompt这个参数,如果有的话且use_custom_prompt的值为True,则进行后续的操作。如果进入这个判断的话,则代表用户在构造SalesGPT的时候,放置了如下两个参数,就是替代系统默认的prompt模板:

sales_agent = SalesGPT.from_llm(
                llm,
                verbose=verbose,
                use_custom_prompt = True,
                custom_prompt = '你定制的prompt'
            )

        另外说一下,这里完全没有必要用deepcopy哈,没必要,简单的赋值就可以了。deepcopy是用在拷贝结构比较复杂的对象的时候用的,这一个bool一个str真的没必要用deepcopy。

        然后我们开始构造一个 SalesConversationChain的实例,把那两个参数带进去:

sales_conversation_utterance_chain = SalesConversationChain.from_llm(
                llm,
                verbose=verbose,
                use_custom_prompt=use_custom_prompt,
                custom_prompt=custom_prompt,
            )

        这个SalesConversationChain,也是在chains.py里的,和刚才那个在一个文件里,我们来看一下:

class SalesConversationChain(LLMChain):
    """Chain to generate the next utterance for the conversation."""

    @classmethod
    @time_logger
    def from_llm(
        cls,
        llm: ChatLiteLLM,
        verbose: bool = True,
        use_custom_prompt: bool = False,
        custom_prompt: str = "You are an AI Sales agent, sell me this pencil",
    ) -> LLMChain:
        """Get the response parser."""
        if use_custom_prompt:
            sales_agent_inception_prompt = custom_prompt
            prompt = PromptTemplate(
                template=sales_agent_inception_prompt,
                input_variables=[
                    "salesperson_name",
                    "salesperson_role",
                    "company_name",
                    "company_business",
                    "company_values",
                    "conversation_purpose",
                    "conversation_type",
                    "conversation_history",
                ],
            )
        else:
            sales_agent_inception_prompt = SALES_AGENT_INCEPTION_PROMPT
            prompt = PromptTemplate(
                template=sales_agent_inception_prompt,
                input_variables=[
                    "salesperson_name",
                    "salesperson_role",
                    "company_name",
                    "company_business",
                    "company_values",
                    "conversation_purpose",
                    "conversation_type",
                    "conversation_history",
                ],
            )
        return cls(prompt=prompt, llm=llm, verbose=verbose)

        这是一个负责和用户对话的agent,同样也没有构造器,也是用类方法来构造实例。如果调用类方法的时候传递了use_custom_prompt(True)、custom_prompt,则使用用户设置的custom_prompt否则就用系统自带的prompt——SALES_AGENT_INCEPTION_PROMPT,这个prompt也在prompts.py里,我们来看一下:

        我建议还是用系统自带的模板,或者在系统自带的模板上去改,因为模板里有很多参数:

input_variables=[
                    "salesperson_name",
                    "salesperson_role",
                    "company_name",
                    "company_business",
                    "company_values",
                    "conversation_purpose",
                    "conversation_type",
                    "conversation_history",
                ]

         这些参数如果是自己构造template很容易丢掉。

构造工具 tools

        如果入参kwargs这个字典里有use_tools且它的值为True或‘True’则把product_catalog的值取出来,使用tools.py里的setup_knowledge_base()函数来构造一个knowledge_base,然后再使用同一个文件里的get_tools()方法构造一个工具tools:

 if "use_tools" in kwargs.keys() and (
            kwargs["use_tools"] == "True" or kwargs["use_tools"] is True
        ):
            # set up agent with tools
            product_catalog = kwargs["product_catalog"]
            knowledge_base = setup_knowledge_base(product_catalog)
            tools = get_tools(knowledge_base)

        至此,我们虽然知道得到了一个tools对象,但是我们不知道tools里面有什么东西,需要进一步看看tools.py里面的两个函数具体做了什么。

        我们看看product_catalog是什么东西?我们从run.py的调用可以看到:

sales_agent = SalesGPT.from_llm(
                llm,
                use_tools=USE_TOOLS,
                product_catalog="examples/sample_product_catalog.txt",
                salesperson_name="Ted Lasso",
                verbose=verbose,
            )

        这个catalog在examples文件夹里,是一个txt文件,我们打开这个文件看看里面的内容:

         可以看到,这些是需要销售的产品的介绍,其实就是一大串str。

        我们来看,setup_knowledge_base()这个函数是怎么构造knowledge_base的:

def setup_knowledge_base(
    product_catalog: str = None, model_name: str = "gpt-3.5-turbo"
):
    """
    We assume that the product catalog is simply a text string.
    """
    # load product catalog
    with open(product_catalog, "r") as f:
        product_catalog = f.read()

    text_splitter = CharacterTextSplitter(chunk_size=10, chunk_overlap=0)
    texts = text_splitter.split_text(product_catalog)

    llm = ChatOpenAI(model_name=model_name, temperature=0)
    embeddings = OpenAIEmbeddings()
    docsearch = Chroma.from_texts(
        texts, embeddings, collection_name="product-knowledge-base"
    )

    knowledge_base = RetrievalQA.from_chain_type(
        llm=llm, chain_type="stuff", retriever=docsearch.as_retriever()
    )
    return knowledge_base

        不难看出,这个函数在构造一个检索器retriever,类似的代码我们在【2024最全最细Lanchain教程-7】Langchain数据增强之词嵌入、存储和检索_langchain的混合检索-CSDN博客

        介绍过,这个就是数据增强RAG那些东西,把产品目录读取成一段文本、分词、向量化存储,然后构造一个检索器。这里用了RetrievalQA,它也是一个chain,我们也可以把它看做是一个Agent,RetrievalQA的用法我们可以在官网找到:langchain.chains.retrieval_qa.base.RetrievalQA — 🦜🔗 LangChain 0.1.4

        它是直接把检索器再拿过来包装一下,成为一个专门的问答Agent,我们可以用上面代码的from_chain_type方法来构造,也可以用其他方法来构造knowledge_base,下面是用from_llm方法构造一个retrievalQA:

from langchain_community.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain_core.vectorstores import VectorStoreRetriever
retriever = VectorStoreRetriever(vectorstore=FAISS(...))
retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)

         获得了这个agent之后,我们用get_tools方法把这个Agent放到工具里,类似的代码我们之前也介绍过【2024最全最细LangChain教程-12】Agent智能体(一)_langchain的智能体是什么-CSDN博客

 

def get_tools(knowledge_base):
    # we only use one tool for now, but this is highly extensible!
    tools = [
        Tool(
            name="ProductSearch",
            func=knowledge_base.run,
            description="useful for when you need to answer questions about product information",
        )
    ]

    return tools

        作者也写了,这个工具箱是可以扩充了,目前只是一个产品介绍而已。至此,我们就获得了一个tools工具箱,这个工具箱里目前只有一个查询产品信息的工具。

构造一个使用工具的sales_agent_with_tools

        这里我们构造最后一个,也是第四个Agent—— sales_agent_with_tools,它是真正查询产品数据并向用户推销的Agent,也是最难构造的一个Agent。我们来看他的代码:

            prompt = CustomPromptTemplateForTools(
                template=SALES_AGENT_TOOLS_PROMPT,
                tools_getter=lambda x: tools,
                # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
                # This includes the `intermediate_steps` variable because that is needed
                input_variables=[
                    "input",
                    "intermediate_steps",
                    "salesperson_name",
                    "salesperson_role",
                    "company_name",
                    "company_business",
                    "company_values",
                    "conversation_purpose",
                    "conversation_type",
                    "conversation_history",
                ],
            )
            llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose)

            tool_names = [tool.name for tool in tools]

            # WARNING: this output parser is NOT reliable yet
            ## It makes assumptions about output from LLM which can break and throw an error
            output_parser = SalesConvoOutputParser(ai_prefix=kwargs["salesperson_name"])

            sales_agent_with_tools = LLMSingleActionAgent(
                llm_chain=llm_chain,
                output_parser=output_parser,
                stop=["\nObservation:"],
                allowed_tools=tool_names,
            )

            sales_agent_executor = AgentExecutor.from_agent_and_tools(
                agent=sales_agent_with_tools, tools=tools, verbose=verbose
            )

         首先,这里的prompt提示词构造方法和以前不一样。这里使用了templates.py里的CustomPromptTemplateForTools类来构造prompt,注意,这里的input_variables没有agent_scratchpad、tools、tool_names,这些都是在CustomPromptTemplateForTools这个类的format方法里面构造出来的。

        我们来看CustomPromptTemplateForTools,这个类是StringPromptTemplate的子类,我们来看看他的具体内容,重点关注format方法,这里重写了这个函数:

class CustomPromptTemplateForTools(StringPromptTemplate):
    # The template to use
    template: str
    ############## NEW ######################
    # The list of tools available
    tools_getter: Callable

    def format(self, **kwargs) -> str:
        # Get the intermediate steps (AgentAction, Observation tuples)
        # Format them in a particular way
        intermediate_steps = kwargs.pop("intermediate_steps")
        thoughts = ""
        for action, observation in intermediate_steps:
            thoughts += action.log
            thoughts += f"\nObservation: {observation}\nThought: "
        # Set the agent_scratchpad variable to that value
        kwargs["agent_scratchpad"] = thoughts
        ############## NEW ######################
        tools = self.tools_getter(kwargs["input"])
        # Create a tools variable from the list of tools provided
        kwargs["tools"] = "\n".join(
            [f"{tool.name}: {tool.description}" for tool in tools]
        )
        # Create a list of tool names for the tools provided
        kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
        return self.template.format(**kwargs)

         坦白说,这块代码就不像之前的代码那么直观了。因为它是对运行中间过程中,提示词的动态处理,就会抽象且复杂一些。我们通过注释可以看出来,这里首先把intermediate_steps的值取出来,然后把里面的action,observation抽取出来然后作为agent_scratchpad的值。

        tools的值怎么来的,我也没太看明白。总之这块我还存疑惑,这块不写一下类似单元测试的代码看一下他的中间过程,只是去看他的代码,确实有点搞不懂他在做什么了。我们先把这块稍微放一下,之后专门来研究一下。

         我们来看一下这里使用的提示词模板template:

         后面的代码就是如何构造一个Agent和Agent_executor,这个我们之前也讲过,稍微麻烦一点的就是:

output_parser = SalesConvoOutputParser(ai_prefix=kwargs["salesperson_name"])

        在这里,他用的输出解析器是他自己定义的一个输出解析器,里面的代码也没大看懂:

 

import re
from typing import Union

from langchain.agents.agent import AgentOutputParser
from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS
from langchain.schema import AgentAction, AgentFinish  # OutputParserException


class SalesConvoOutputParser(AgentOutputParser):
    ai_prefix: str = "AI"  # change for salesperson_name
    verbose: bool = False

    def get_format_instructions(self) -> str:
        return FORMAT_INSTRUCTIONS

    def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
        if self.verbose:
            print("TEXT")
            print(text)
            print("-------")
        if f"{self.ai_prefix}:" in text:
            return AgentFinish(
                {"output": text.split(f"{self.ai_prefix}:")[-1].strip()}, text
            )
        regex = r"Action: (.*?)[\n]*Action Input: (.*)"
        match = re.search(regex, text)
        if not match:
            ## TODO - this is not entirely reliable, sometimes results in an error.
            return AgentFinish(
                {
                    "output": "I apologize, I was unable to find the answer to your question. Is there anything else I can help with?"
                },
                text,
            )
            # raise OutputParserException(f"Could not parse LLM output: `{text}`")
        action = match.group(1)
        action_input = match.group(2)
        return AgentAction(action.strip(), action_input.strip(" ").strip('"'), text)

    @property
    def _type(self) -> str:
        return "sales-agent"

        不过没有关系,from_llm()类的主要作用和内容我们基本上掌握了90%,当然我们也发现了两个比较深、不那么直观的地方我们暂时不是很理解,我们作为下节课重点研究的对象,因为今天写的东西已经太多了,已经快2.5万字了,我也搞不动了,明天再继续研究吧。

        两个遗留问题:

1. CustomPromptTemplateForTools

2. SalesConvoOutputParser

 

02-14 06:12