【PyTorch】torch.fmod使用截断正态分布truncated normal distribution初始化神经网络的权重

这个代码片段展示了如何用 PyTorch 初始化神经网络的权重,具体使用的是截断正态分布(truncated normal distribution)。截断正态分布意味着生成的值会在一定范围内截断,以防止出现极端值。这里使用 torch.fmod 作为一种变通方法实现这一效果。 详细解释 1. 截断正态分布 截断正态分布是对正态分布的一种修改,确保生成的值在一定范围内。具体来说,torch.fmod 函...

【TORCH】神经网络权重初始化和loss为inf

权重导致 Loss 为 `inf`避免 Loss 为 `inf` 的建议示例:检查损失是否为 `inf` 数据输入范围和权重初始化 是的,初始化权重和数据范围之间确实有关系。输入数据的范围和分布会影响神经网络的训练过程,因此权重初始化需要与之配合,以确保模型能够有效地学习和收敛。 数据范围对权重初始化的影响 输入数据归一化/标准化: 归一化/标准化输入数据可以确保所有特征具有相似的尺度,从而防止某些特征主...

基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型

用于直观展示房价分析结果,而后台数据管理模块则负责数据的收集、清洗、存储和处理。 为了提升房价预测的准确性,平台将集成多种机器学习模型,包括线性回归、支持向量机(SVM)、梯度提升树(GBDT)和BP神经网络等。这些模型各自具有不同的优势:线性回归模型简洁且易于解释,适合处理线性关系;SVM在处理高维数据时表现出色;GBDT通过多棵决策树的加权和提升预测精度;BP神经网络则能较好地处理非线性关系和复杂的模...

【BP回归预测】基于雾凇算法优化BP神经网络RIME-BP多输入多输出预测附Matlab代码

🔥 内容介绍 BP神经网络因其强大的非线性映射能力,在多输入多输出预测领域得到了广泛应用。然而,传统的BP神经网络易陷入局部最优,收敛速度慢,且对初始权值和阈值敏感。针对这些问题,本文提出了一种基于雾凇算法优化BP神经网络的RIME-BP模型。该模型通过引入雾凇算法优化BP神经网络的权值和阈值,有效提升了网络的预测精度和收敛速度,并降低了对初始参数的敏感性。通过对实际数据的预测实验,验证了RIME-BP...

人工智能、机器学习、神经网络、深度学习和卷积神经网络的概念和关系

以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能核心,是使计算机具有智能的根本途径。 深度学习(Deep Learning,缩写为DL)--深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的有效表示,而这种使用相对较短、稠密的向量表示叫做分布式特征表示(也可以称...

基于双向长短期神经网络BILSTM的容量预测,基于BILSTM的回归分析

,为提高精度,本文用BILSTM进行预测 摘要 LSTM原理,BILSTM原理,MATALB编程的BILSTM容量预测 LSTM的基本定义 LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为它可以记忆不定时间长度的数值,区块中有一个gate能够决定input是否重要到能被记住及能不能被输出output。 图1底下是四个S函数单元...

深度神经网络

文章目录 深度神经网络 (DNN)1. 概述2. 基本概念3. 网络结构 深度神经网络的层次结构详细讲解1. 输入层(Input Layer)2. 隐藏层(Hidden Layers)3. 输出层(Output Layer)整体流程深度神经网络的优点深度神经网络的挑战4. 训练过程5. 激活函数6. 损失函数7. 优化算法8. 深度学习框架9. 应用领域10. 深度神经网络的挑战11. 深度神经网络的未...

深度神经网络(DNN)详解

1.1 神经网络 神经网络是由人工神经元(节点)组成的网络结构。每个神经元接收输入信号,经过加权处理和激活函数转换,产生输出信号。基本的神经网络结构包括输入层、隐藏层和输出层。 1.2 深度学习 深度学习是机器学习的一个分支,专注于通过多层神经网络(即深度神经网络)从大量数据中自动提取特征并进行学习。与传统的浅层神经网络相比,深度神经网络具有更多的隐藏层,从而能够捕捉到数据的更复杂、更抽象的模式。 二、深...

【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow

一、介绍 球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 ‘美式足球’, ‘棒球’, ‘篮球’, ‘台球’, ‘保龄球’, ‘板球’, ‘足球’, ‘高尔夫球’, ‘曲棍球’, ‘冰球’, ‘橄榄球’, ‘羽毛球’, ‘乒乓球’, ‘网球’, '排球’等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高...

海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow

一、介绍 海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物(‘蛤蜊’, ‘珊瑚’, ‘螃蟹’, ‘海豚’, ‘鳗鱼’, ‘水母’, ‘龙虾’, ‘海蛞蝓’, ‘章鱼’, ‘水獭’, ‘企鹅’, ‘河豚’, ‘魔鬼鱼’, ‘海胆’, ‘海马’, ‘海豹’, ‘鲨鱼’, ‘虾’, ‘鱿鱼’, ‘海星’, ‘海龟’, ‘...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.015490(s)
2024-07-19 03:59:09 1721332749