YOLOv9改进策略 :红外小目标 | 注意力 |多膨胀通道精炼(MDCR)模块,红外小目标暴力涨点| 2024年3月最新成果

  💡💡💡红外小目标实现暴力涨点,只有几个像素的小目标识别率大幅度提升  💡💡💡多个私有数据集涨点明显,如缺陷检测NEU-DET、农业病害检测等;  改进1结构图如下:  改进2结构图如下:   《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化...

YOLOv8改进 | 检测头篇 | 自研超分辨率检测头HATHead助力超分辨率检测(混合注意力变换器检测头)

一、本文介绍 本文给大家带来的改进机制是由由我本人利用HAT注意力机制(超分辨率注意力机制)结合V8检测头去掉其中的部分内容形成一种全新的超分辨率检测头。混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息。本文中均有添加方...

基于YOLOv8的PCB缺陷检测系统(Python源码+Pyqt6界面+数据集)

💡💡💡本文摘要:基于YOLOv8的PCB缺陷检测系统,并阐述了整个数据制作和训练可视化过程,最后通过Pyside UI界面进行展示。 博主简介 AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富; 原创自研系列, 2024年计算机视觉顶会创新点 《YOLOv8原创自研》 《YOLOv5...

即插即用篇 | YOLOv5/v7引入Haar小波下采样 | 一种简单而有效的语义分割下采样模块

下采样操作如最大池化或步幅卷积在卷积神经网络(CNNs)中被广泛应用,用于聚合局部特征、扩大感受野并减少计算负担。然而,对于语义分割任务,对局部邻域的特征进行池化可能导致重要的空间信息丢失,这有助于逐像素预测。为了解决这个问题,我们引入了一种简单而有效的池化操作,称为基于Haar小波的下采样(HWD)模块。该模块可以轻松集成到CNNs中,以提高语义分割模型的性能。HWD的核心思想是应用Haar小波变换来降...

基于YOLOv8的铁路工人安全作业检测系统

💡💡💡本文摘要:基于YOLOv8的铁路工人安全作业检测系统,属于小目标检测范畴,并阐述了整个数据制作和训练可视化过程,   博主简介 AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富; 原创自研系列, 2024年计算机视觉顶会创新点 《YOLOv8原创自研》 《YOLOv5原创自研》...

在自定义数据集上微调 YOLOv9 模型

在自定义数据集上微调 YOLOv9模型可以显着提高目标检测性能,但这种改进有多显着呢?在这次全面的探索中,YOLOv9在SkyFusion数据集上进行了微调,分为三个不同的类别:飞机、船舶和车辆。通过一系列广泛的实验,包括修改学习率、图像大小和战略性冻结主干网,已经实现了令人印象深刻的mAP50 值0.766 ! 这篇研究文章不仅详细介绍了这些重要结果,还提供了对这些实验背后的微调代码的访问。 ...

Python+Yolov8框选位置目标识别人数统计计数

前言 这篇博客针对《Python+Yolov8框选位置目标识别人数统计计数》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。 运行结果 文章目录 一、所需工具软件 二、使用步骤        1. 主要代码        2. 运行结果 三、在线协助 一、所需工具软件        1. VS2019, Qt        2. C++ 二、使用步骤 代码如下(示例): import cv2fro...

第五章 YOLOv3训练自己的数据集

   使用voc_annotation.py生成2012_train.txt和2012_val.txt标注文件,如图14所示: 图14 二、 模型训练 (1)训练所需要的环境如下: (2)下载附件5 yolov3-keras,解压后,使用vs code打开项目文件夹(图15),并使用上述环境运行train.py进行模型训练。 图15 图16       (3)训练结束后,项目根目录下会生成logs/000文...

YoloV5改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

务的主干网络中,也可以用在分割和超分的任务中。已经有粉丝用来改进ConvNext模型,取得了非常好的效果,配合一些其他的改进,发一篇CVPR、ECCV之类的顶会完全没有问题。 本次我将这个模块用来改进YoloV5,实现大幅度涨点。 自研下采样模块及其变种 第一种改进方法 将输入分成两个分支,一个分支用卷积,一个分支分成两部分,一部分用MaxPool,一部分用AvgPool。然后,在最后合并起来。代码如下: ...

YoloV8改进策略:BackBone改进|GCNet(独家原创)

摘要 非局部网络(NLNet)通过为每个查询位置聚合特定于查询的全局上下文,为捕获长距离依赖关系提供了一个开创性的方法。然而,经过严格的实证分析,我们发现非局部网络所建模的全局上下文在图像中的不同查询位置几乎相同。在本文中,我们利用这一发现,创建了一个基于查询独立公式的简化网络,该网络保持了NLNet的准确性,但计算量大大减少。我们还观察到,这种简化的设计与压缩-激励网络(SENet)具有相似的结构。因此...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.004736(s)
2024-04-14 16:48:56 1713084536