lucas定理

(nm) mod p=(⌊np⌋⌊mp⌋)(n mod pm mod p) mod p=(n/pm/p)(n%pm%p) mod p\tbinom{n}{m} \bmod p = \tbinom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{m}{p} \rfloor} \tbinom{n \bmod p}{m \bmod p} \bmod p=\tbinom{n/p}{m/p}\tbinom{n\%p}{m\%p} \bmod p(mn​)modp=(⌊pm​⌋⌊pn​⌋​)(mmodpnmodp​)modp=(m/pn/p​)(m%pn%p​)modp

先预先求出i!  (i∈[0,p))i! \;(i \in \left[0,p\right))i!(i∈[0,p)).

并利用费马小定理和快速幂乘求出每一个i!i!i!的逆元(i!)−1(i!)^{-1}(i!)−1。求(nm) mod p\tbinom{n}{m} \bmod p(mn​)modp,当m=0m=0m=0直接就是111.若n,mn,mn,m都在ppp范围内,则直接转化为n!×(m!)−1×[(n−m)!]−1n! \times (m!)^{-1} \times [(n-m)!]^{-1}n!×(m!)−1×[(n−m)!]−1.否则就是lucas定理缩小规模。

[对一个固定的p,预处理求阶乘及快速模幂求其逆元,时间复杂度O(plog⁡2p)O(p\log_2{p})O(plog2​p)。空间复杂度O(p)O(p)O(p)。预处理之后,单次求(nm) mod p\tbinom{n}{m} \bmod p(mn​)modp复杂度O(log⁡pm)O(\log_{p}{m})O(logp​m)]{}

洛谷P3807模板题

void prepare(ll p, vector<ll>&fac, vector<ll>&inv_fac) {
fac.resize(p); inv_fac.resize(p);
mod_sys mod;
mod.set_mod(p);
fac[0] = 1;
inv_fac[0] = 1;
for (int i = 1; i < p; ++i) {
fac[i] = (fac[i-1]*i)%p;
inv_fac[i] = mod.pow(fac[i], p-2); // 既然能枚举一遍,p*p不应该爆ll
}
} // 输入预设0=<n,m<p
inline ll combination(ll n, ll m, ll p, vector<ll>&fac, vector<ll>&inv_fac) {
if (n < m) return 0;
return fac[n]*inv_fac[m]%p*inv_fac[n-m]%p;
} ll lucas(ll n, ll m, ll p, vector<ll>&fac, vector<ll>&inv_fac) {
if (n < m) return 0;
ll ans = 1;
while(true) {
if (m == 0) return ans;
if (n < p && m < p) return ans*combination(n,m,p,fac,inv_fac)%p;
ans = ans * combination(n%p,m%p,p,fac,inv_fac)%p;
n/=p; m/=p;
}
}
05-11 08:02