循环码生成多项式与生成矩阵

定义:记 C ( x ) \mathrm{C}(x) C(x) 为 (n, k) 循环码的所有码字对应的多项式的集合, 若 g(x) 是 C ( x ) \mathrm{C}(x) C(x) 中除 0 多项式以外次数最低的多项式, 则称 g(x) 为这个循环码的生成多项式

定理1: ( n , k ) (\boldsymbol{n}, \boldsymbol{k}) (n,k) 循环码中, 必定存在一个次数最小的唯一的码多项式g(x) , 称为生成多项式,
g ( x ) = x r + g r − 1 x r − 1 + ⋯ + g 1 x + 1 g(x)=x^{r}+g_{r-1} x^{r-1}+\cdots+g_{1} x+1 g(x)=xr+gr1xr1++g1x+1
其中: r = n − k r=n-k r=nk .

该码集中任意码字的码多项式必为g(x)的倍式。

非系统循环码的编码:
c ( x ) = u ( x ) g ( x ) c(x)=u(x) g(x) c(x)=u(x)g(x)

定理2: 当且仅当 g(x) 是 x n + 1 x^{n+1} xn+1 r = n − k r=n-k r=nk 次因式时, g(x)是(n, k)循环码的生成多项式。

定理3: (n, k) 循环码的校验多项式为
h ( x ) = x n + 1 g ( x ) = h k x k + h k − 1 x k − 1 + ⋯ + h 1 x + h 0 \begin{array}{l} h(x)=\frac{x^{n}+1}{g(x)} \\ =h_{k} x^{k}+h_{k-1} x^{k-1}+\cdots+h_{1} x+h_{0} \end{array} h(x)=g(x)xn+1=hkxk+hk1xk1++h1x+h0
写出下面(7,3)循环码的生成多项式

循环码生成矩阵与监督 (校验) 矩阵-LMLPHP
g ( x ) = x 4 + x 3 + x 2 + 1 a r r o w 0011101 g(x)=x^{4}+x^{3}+x^{2}+1 arrow 0011101 g(x)=x4+x3+x2+1arrow0011101
(1) 生成多项式、生成矩阵

循环码生成多项式的特点:

  • g(x) 的 0 次项是 1 ;
  • g(x) 唯一确定, 即它是码多项式中除 0 多项式以外次数最低的多项式;
  • 循环码每一码多项式都是 g(x) 的倍式, 且每一个小于等于 (n-1) 次的 g(x) 倍式一定是码多项式;
  • g(x) 的次数为 (n-k) ;
  • g(x) 是 x n + 1 x^{n}+1 xn+1 的一个因子。

为了保证构成的生成矩阵 G 的各行线性不相关, 通常用生成多项式 g(x) 来构造生成矩阵; 若码多项式为降幂排列,
g ( x ) = g n − k x n − k + g n − k − 1 x n − k − 1 + ⋯ + g 1 x + g 0 , r = n − k C ( x ) = u G ( x ) = ( u k − 1 u k − 2 ⋯ u 0 ) G ( x ) = u k − 1 x k − 1 g ( x ) + u k − 2 x k − 2 g ( x ) + ⋯ + u 0 g ( x ) G ( x ) = [ x k − 1 g ( x ) x k − 2 g ( x ) ⋮ g ( x ) ] r i g h t a r r o w G = [ g r g r − 1 ⋯ g 1 g 0 0 0 ⋯ 0 0 g r g r − 1 ⋯ g 1 g 0 0 ⋯ 0 ⋮ ⋮ 0 ⋯ 0 0 g r g r − 1 ⋯ g 1 g 0 ] \begin{array}{l} g(x)=g_{n-k} x^{n-k}+g_{n-k-1} x^{n-k-1}+\cdots+g_{1} x+g_{0}, r=n-k \\ C(x)=\mathbf{u G}(x)=(u_{k-1} u_{k-2} \cdots u_{0}) \mathbf{G}(x) \\ =u_{k-1} x^{k-1} g(x)+u_{k-2} x^{k-2} g(x)+\cdots+u_{0} g(x) \\ G(x)=[\begin{array}{c} x^{k-1} g(x) \\ x^{k-2} g(x) \\ \vdots \\ g(x) \end{array}] rightarrow G=[\begin{array}{ccccccccc} g_{r} & g_{r-1} & \cdots & g_{1} & g_{0} & 0 & 0 & \cdots & 0 \\ 0 & g_{r} & g_{r-1} & \cdots & g_{1} & g_{0} & 0 & \cdots & 0 \\ & \vdots & & & & & \vdots & & \\ 0 & \cdots & 0 & 0 & g_{r} & g_{r-1} & \cdots & g_{1} & g_{0} \end{array}] \\ \end{array} g(x)=gnkxnk+gnk1xnk1++g1x+g0,r=nkC(x)=uG(x)=(uk1uk2u0)G(x)=uk1xk1g(x)+uk2xk2g(x)++u0g(x)G(x)=[xk1g(x)xk2g(x)g(x)]rightarrowG=[gr00gr1grgr10g10g0g1gr0g0gr100g100g0]
显然, 上式不符合 G = ( I k : Q ) \mathbf{G}=(\mathbf{I}_{k}: \mathbf{Q}) G=(Ik:Q) 形式, 所以此生成矩阵不是典型形式。

系统码生成矩阵的构造

系统码-信息位在码字高位, 因此编码时需要先将信息位置于码字高位, 即 u(x) \bullet x^{n-k} 。 码字低位为校验位,如何获得?
c ( x )   m o d   g ( x ) = 0 c ( x ) = u ( x ) ⋅ x n − k + r ( x ) 0 = { [ u ( x ) x n − k ]   m o d   g ( x ) + r ( x ) } = r ( x ) [ u ( x ) x n − k ]   m o d   g ( x ) \begin{array}{c} c(x)_{\bmod g(x)}=0 \\ c(x)=u(x) \cdot x^{n-k}+r(x) \\ \mathbf{0}=\{[u(x) x^{n-k}]_{\bmod g(x)}+r(x)\} \end{array} \quad \stackrel{r(x)}{=}[u(x) x^{n-k}] \bmod g(x) c(x)modg(x)=0c(x)=u(x)xnk+r(x)0={[u(x)xnk]modg(x)+r(x)}=r(x)[u(x)xnk]modg(x)
(2) 系统循环码

系统循环码的编码:

a. 选择一信息码多项式 μ ( x ) \mu(x) μ(x) , 使 r ( x ) = x n − k μ ( x )   m o d   g ( x ) \quad r(x)=x^{n-k} \mu(x) \bmod g(x) r(x)=xnkμ(x)modg(x)

b. 产生系统循环码式 c ( x ) = x n − k μ ( x ) + r ( x ) \mathrm{c}(x)=x^{n-k} \mu(x)+r(x) c(x)=xnkμ(x)+r(x)

系统码的循环码生成矩阵

G ( x ) = [ x n − 1 + ( x n − 1 )   m o d   g ( x ) x n − 2 + ( x n − 2 )   m o d   g ( x ) ⋮ x n − i + ( x n − i )   m o d   g ( x ) ⋮ g ( x ) ] = [ 1 0 ⋯ 0 r 1 , 1 r 1 , 2 ⋯ r 1 , n − k 0 1 ⋯ 0 r 2 , 1 r 2 , 2 ⋯ r 2 , n − k ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 r k , 1 r k , 2 ⋯ r k , n − k ] G(x)=[\begin{array}{c} x^{n-1}+(x^{n-1})_{\bmod g(x)} \\ x^{n-2}+(x^{n-2})_{\bmod g(x)} \\ \vdots \\ x^{n-i}+(x^{n-i})_{\bmod g(x)} \\ \vdots \\ g(x) \end{array}]=[\begin{array}{cccccccc} 1 & 0 & \cdots & 0 & r_{1,1} & r_{1,2} & \cdots & r_{1, n-k} \\ 0 & 1 & \cdots & 0 & r_{2,1} & r_{2,2} & \cdots & r_{2, n-k} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & r_{k, 1} & r_{k, 2} & \cdots & r_{k, n-k} \end{array}] G(x)=[xn1+(xn1)modg(x)xn2+(xn2)modg(x)xni+(xni)modg(x)g(x)]=[100010001r1,1r2,1rk,1r1,2r2,2rk,2r1,nkr2,nkrk,nk]

某 (7,4) 循环码的生成多项式是 g ( x ) = x 3 + x + 1 g(x)=x^{3}+x+1 g(x)=x3+x+1 , 求系统码的生成矩阵。

解:
( x 6 )   m o d   g ( x ) = x 2 + 1 ( x 5 )   m o d   g ( x ) = x 2 + x + 1 ( x 4 )   m o d   g ( x ) = x 2 + x a r r o w G = [ 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 ] \begin{array}{l} (x^{6}) \bmod g(x)=x^{2}+1 \\ (x^{5}) \bmod g(x)=x^{2}+x+1 \\ (x^{4}) \bmod g(x)=x^{2}+x \end{array} \quad arrow G=[\begin{array}{lllllll} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}] (x6)modg(x)=x2+1(x5)modg(x)=x2+x+1(x4)modg(x)=x2+xarrowG=[1000010000100001111001111101]

循环码的监督 (校验) 矩阵

关系: G H T = 0 \boldsymbol{G} \boldsymbol{H}^{T}=\mathbf{0} GHT=0

a. 监督矩阵构造:由性质 x n + 1 = g ( x ) h ( x ) x^{n}+1=g(x) h(x) xn+1=g(x)h(x) ;
h ( x ) = h k x k + h k − 1 x k − 1 + … + h 1 x + h 0 H = [ h 0 h 1 ⋯ h k 0 ⋯ 0 0 h 0 h 1 ⋯ h k ⋯ 0 ⋮ ⋮ 0 0 ⋯ h 0 h 1 ⋯ h k ] \begin{array}{l} h(x)=h_{k} x^{k}+h_{k-1} x^{k-1}+\ldots+h_{1} x+h_{0} \\ H=[\begin{array}{ccccccc} h_{0} & h_{1} & \cdots & h_{k} & 0 & \cdots & 0 \\ 0 & h_{0} & h_{1} & \cdots & h_{k} & \cdots & 0 \\ & \vdots & & & & \vdots & \\ 0 & 0 & \cdots & h_{0} & h_{1} & \cdots & h_{k} \end{array}] \\ \end{array} h(x)=hkxk+hk1xk1++h1x+h0H=[h000h1h00h1hkh00hkh100hk]
b. 利用循环码的特点来确定监督矩阵 H :

由于 (n, k) 循环码中 g(x) 是 x n + 1 x^{n+1} xn+1 的因式, 因此可令: h ( x ) = x n + 1 g ( x ) = h k x k + h k − 1 x k − 1 + ⋯ + h 1 x + h 0 h(x)=\frac{x^{n}+1}{g(x)}=h_{k} x^{k}+h_{k-1} x^{k-1}+\cdots+h_{1} x+h_{0} h(x)=g(x)xn+1=hkxk+hk1xk1++h1x+h0 监督矩阵表示为:

H ( x ) = [ x n − k − 1 h ∗ ( x ) x n − k − 2 h ∗ ( x ) ⋮ x h ∗ ( x ) h ∗ ( x ) ] H(x)=[\begin{array}{c} x^{n-k-1} h^{*}(x) \\ x^{n-k-2} h^{*}(x) \\ \vdots \\ x h^{*}(x) \\ h^{*}(x) \end{array}] H(x)=[xnk1h(x)xnk2h(x)xh(x)h(x)]

h ∗ ( x ) = h 0 x k + h 1 x k − 1 + h 2 x k − 2 + ⋯ + h k − 1 x h^{*}(x)=h_{0} x^{k}+h_{1} x^{k-1}+h_{2} x^{k-2}+\cdots+h_{k-1} x h(x)=h0xk+h1xk1+h2xk2++hk1x

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
06-19 00:13