已知f(x)连续 ∫ 0 x t f ( x − t )   d t = 1 − cos ⁡ x , 求 ∫ 0 π 2 f ( x ) d x 的值。 \int_{0}^{x}tf(x-t)\,{\rm d}t=1-\cos x,求\int_{0}^{\frac{\pi}{2}}f(x)dx的值。 0xtf(xt)dt=1cosx,02πf(x)dx的值。
已知一个关于f的变上限积分等式,(变上限积分函数的特点,求导比较容易)所以可以等式两边同时求导。
但是对于这个题目,不可以直接求导。在变上限函数中,t是积分变量,而x不是。
对于这类题目,有一个通用方法----做变量代换,把x-t换成变量u。
❗❗❗变量代换注意换上下限,下面容易出错!


令u=x-t <=> t=x-u


原式= ∫ 0 x ( x − u ) f ( u ) d u \int_{0}^{x}(x-u)f(u)du 0x(xu)f(u)du
= x ∫ 0 x f ( u ) d u − ∫ 0 x u f ( u ) d u =x\int_{0}^{x}f(u)du-\int_{0}^{x}uf(u)du =x0xf(u)du0xuf(u)du
对等式两边同时求导得,
∫ 0 x f ( u ) d u + x f ( x ) − x f ( x ) = sin ⁡ x \int_{0}^{x}f(u)du+xf(x)-xf(x)=\sin x 0xf(u)du+xf(x)xf(x)=sinx
∫ 0 x f ( u ) d u = sin ⁡ x \int_{0}^{x}f(u)du=\sin x 0xf(u)du=sinx
这时对等式两边再次同时求导,得
f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx
这时,题目要求的
∫ 0 π 2 f ( x ) d x \int_{0}^{\frac{\pi}{2}}f(x)dx 02πf(x)dx
= ∫ 0 π 2 cos ⁡ x d x =\int_{0}^{\frac{\pi}{2}}\cos x dx =02πcosxdx
= sin ⁡ x ∣ 0 π 2 = 1 =\sin x |_{0}^{\frac{\pi}{2}}=1 =sinx02π=1

05-08 02:15