计算机视觉——OpenCV Python基于颜色识别的目标检测

1. 计算机视觉中的颜色空间 颜色空间在计算机视觉领域的应用非常广泛,它们在图像和视频处理、物体检测等任务中扮演着重要角色。颜色空间的主要作用是将颜色以数值形式表示出来,这样计算机算法就能够对其进行处理和分析。不同的颜色空间有着不同的特点和适用场景,下面我们来快速了解一下几种最常用的颜色空间: RGB颜色空间:这是最常用的颜色空间之一,特别是在计算机显示和数字图像处理中。RGB代表红色(Red)、绿...

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别 一、简单介绍 二、简单人脸识别实现原理 三、简单人脸识别案例实现简单步骤 四、注意事项 附录: 一、cv2.data.haarcascades 目录下,一些文...

论文解读 --- 《针对PowerShell脚本的有效轻量级去混淆和语义感知攻击检测

scation and Semantic-Aware Attack Detection for PowerShell Scripts》,即《针对PowerShell脚本的有效轻量级去混淆和语义感知攻击检测》,作者为浙江大学网络安全博士。其在论文中提出了一个行之有效的对混淆的powershell脚本进行还原的方法,读来非常有启发性,值得写一篇文章来系统地分析下该方案。更重要的是,该还原方案具有通用性,不...

计算机视觉——手机目标检测数据集

这是一个手机目标检测的数据集,数据集的标注工具是labelimg,数据格式是voc格式,要训练yolo模型的话,可以使用脚本改成txt格式,数据集标注了手机,标签名:telephone,数据集总共有1960张,有一部分是直实数据,有一部分是是真实数据。 数据集地址:https://download.csdn.net/download/matt45m/89136478 数据标注如下: 数据保存目录如下...

目标检测与图像分类的区别(概念)

目标检测和图像分类是计算机视觉领域的两个重要任务,它们有一些关键的区别: 1、任务目标 图像分类:图像分类的任务是将输入的图像分为不同的类别,通常是预定义的类别集合。在这种任务中,算法的目标是确定图像中包含的主要对象属于哪个类别。 目标检测:目标检测的任务是在图像中识别和定位一个或多个不同对象,通常是在图像中的特定区域标出对象的边界框,并为每个对象分配一个类别标签。 2、输出结果 图像分类:输出结果是...

halcon缺陷检测-印刷品检测(差异化模型),键盘字符缺陷检测

前言 在实际项目中,印刷品缺陷检测是缺陷检测中的难点项目。通常印刷品检测往往具备缺陷小,缺陷所在位置不固定,出现少印或者多印的情况。并且由于产线原因,大量的印刷品在视野中的大小并不是完全一致的,可能出现细微的歪斜,亮度差异等多种不确定的因素。 所以在印刷品检测时,常用的blob分析+差值算法,往往不能满足实际的要求。所以使用差异化模型,对图像区域进行训练,在可靠的精度下,仍然可以达到极快的检测速度。...

flutter中鼠标检测事件的应用---主要在于网页端使用

flutter中鼠标检测事件的应用—主要在于网页端使用 鼠标放上去 主要代码 import 'package:flutter/material.dart'; class CustomStack extends StatefulWidget { @override _CustomStack createState() => _CustomStack();} class _CustomStack ex...

halcon-轴断面检测定位

前言 通常情况下轴检测时,通常会检测轴的各个阶段的长度。但是由于各种原因,在轴断面的区域现实不明显,无法正确提取,这时候需要根据轴断面的突出部分进行检测,但是由于部分轴的粗轴和细轴区域的宽度差距相当接近,所以就需要通过另外的处理,将轴的断面进行单独提取 1.halcon程序 * Image Acquisition 01: Code generated by Image Acquisition 01...

YOLOv8改进 | 检测头篇 | 自研超分辨率检测头HATHead助力超分辨率检测(混合注意力变换器检测头)

一、本文介绍 本文给大家带来的改进机制是由由我本人利用HAT注意力机制(超分辨率注意力机制)结合V8检测头去掉其中的部分内容形成一种全新的超分辨率检测头。混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息。本文中均有...

计算机视觉——DiffYOLO 改进YOLO与扩散模型的抗噪声目标检测

概述 物体检测技术在图像处理和计算机视觉中发挥着重要作用。其中,YOLO 系列等型号因其高性能和高效率而备受关注。然而,在现实生活中,并非所有数据都是高质量的。在低质量数据集中,更难准确检测物体。为了解决这个问题,人们正在探索新的方法。例如,本文提出了一个名为 DiffYOLO 的框架。这可以提高低质量数据集上物体检测的准确性。 介绍 近年来,YOLO 被广泛应用于自动驾驶和医学图像处理等多个领域的...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.021862(s)
2024-04-18 06:01:41 1713391301